| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subgga.1 |
|
| 2 |
|
subgga.2 |
|
| 3 |
|
subgga.3 |
|
| 4 |
|
subgga.4 |
|
| 5 |
3
|
subggrp |
|
| 6 |
1
|
fvexi |
|
| 7 |
5 6
|
jctir |
|
| 8 |
|
subgrcl |
|
| 9 |
8
|
adantr |
|
| 10 |
1
|
subgss |
|
| 11 |
10
|
sselda |
|
| 12 |
11
|
adantrr |
|
| 13 |
|
simprr |
|
| 14 |
1 2
|
grpcl |
|
| 15 |
9 12 13 14
|
syl3anc |
|
| 16 |
15
|
ralrimivva |
|
| 17 |
4
|
fmpo |
|
| 18 |
16 17
|
sylib |
|
| 19 |
3
|
subgbas |
|
| 20 |
19
|
xpeq1d |
|
| 21 |
20
|
feq2d |
|
| 22 |
18 21
|
mpbid |
|
| 23 |
|
eqid |
|
| 24 |
23
|
subg0cl |
|
| 25 |
|
oveq12 |
|
| 26 |
|
ovex |
|
| 27 |
25 4 26
|
ovmpoa |
|
| 28 |
24 27
|
sylan |
|
| 29 |
3 23
|
subg0 |
|
| 30 |
29
|
oveq1d |
|
| 31 |
30
|
adantr |
|
| 32 |
1 2 23
|
grplid |
|
| 33 |
8 32
|
sylan |
|
| 34 |
28 31 33
|
3eqtr3d |
|
| 35 |
8
|
ad2antrr |
|
| 36 |
10
|
ad2antrr |
|
| 37 |
|
simprl |
|
| 38 |
36 37
|
sseldd |
|
| 39 |
|
simprr |
|
| 40 |
36 39
|
sseldd |
|
| 41 |
|
simplr |
|
| 42 |
1 2
|
grpass |
|
| 43 |
35 38 40 41 42
|
syl13anc |
|
| 44 |
1 2
|
grpcl |
|
| 45 |
35 40 41 44
|
syl3anc |
|
| 46 |
|
oveq12 |
|
| 47 |
|
ovex |
|
| 48 |
46 4 47
|
ovmpoa |
|
| 49 |
37 45 48
|
syl2anc |
|
| 50 |
43 49
|
eqtr4d |
|
| 51 |
2
|
subgcl |
|
| 52 |
51
|
3expb |
|
| 53 |
52
|
adantlr |
|
| 54 |
|
oveq12 |
|
| 55 |
|
ovex |
|
| 56 |
54 4 55
|
ovmpoa |
|
| 57 |
53 41 56
|
syl2anc |
|
| 58 |
|
oveq12 |
|
| 59 |
|
ovex |
|
| 60 |
58 4 59
|
ovmpoa |
|
| 61 |
39 41 60
|
syl2anc |
|
| 62 |
61
|
oveq2d |
|
| 63 |
50 57 62
|
3eqtr4d |
|
| 64 |
63
|
ralrimivva |
|
| 65 |
3 2
|
ressplusg |
|
| 66 |
65
|
oveqd |
|
| 67 |
66
|
oveq1d |
|
| 68 |
67
|
eqeq1d |
|
| 69 |
19 68
|
raleqbidv |
|
| 70 |
19 69
|
raleqbidv |
|
| 71 |
70
|
biimpa |
|
| 72 |
64 71
|
syldan |
|
| 73 |
34 72
|
jca |
|
| 74 |
73
|
ralrimiva |
|
| 75 |
22 74
|
jca |
|
| 76 |
|
eqid |
|
| 77 |
|
eqid |
|
| 78 |
|
eqid |
|
| 79 |
76 77 78
|
isga |
|
| 80 |
7 75 79
|
sylanbrc |
|