Metamath Proof Explorer


Theorem subgga

Description: A subgroup acts on its parent group. (Contributed by Jeff Hankins, 13-Aug-2009) (Proof shortened by Mario Carneiro, 13-Jan-2015)

Ref Expression
Hypotheses subgga.1 X=BaseG
subgga.2 +˙=+G
subgga.3 H=G𝑠Y
subgga.4 F=xY,yXx+˙y
Assertion subgga YSubGrpGFHGrpActX

Proof

Step Hyp Ref Expression
1 subgga.1 X=BaseG
2 subgga.2 +˙=+G
3 subgga.3 H=G𝑠Y
4 subgga.4 F=xY,yXx+˙y
5 3 subggrp YSubGrpGHGrp
6 1 fvexi XV
7 5 6 jctir YSubGrpGHGrpXV
8 subgrcl YSubGrpGGGrp
9 8 adantr YSubGrpGxYyXGGrp
10 1 subgss YSubGrpGYX
11 10 sselda YSubGrpGxYxX
12 11 adantrr YSubGrpGxYyXxX
13 simprr YSubGrpGxYyXyX
14 1 2 grpcl GGrpxXyXx+˙yX
15 9 12 13 14 syl3anc YSubGrpGxYyXx+˙yX
16 15 ralrimivva YSubGrpGxYyXx+˙yX
17 4 fmpo xYyXx+˙yXF:Y×XX
18 16 17 sylib YSubGrpGF:Y×XX
19 3 subgbas YSubGrpGY=BaseH
20 19 xpeq1d YSubGrpGY×X=BaseH×X
21 20 feq2d YSubGrpGF:Y×XXF:BaseH×XX
22 18 21 mpbid YSubGrpGF:BaseH×XX
23 eqid 0G=0G
24 23 subg0cl YSubGrpG0GY
25 oveq12 x=0Gy=ux+˙y=0G+˙u
26 ovex 0G+˙uV
27 25 4 26 ovmpoa 0GYuX0GFu=0G+˙u
28 24 27 sylan YSubGrpGuX0GFu=0G+˙u
29 3 23 subg0 YSubGrpG0G=0H
30 29 oveq1d YSubGrpG0GFu=0HFu
31 30 adantr YSubGrpGuX0GFu=0HFu
32 1 2 23 grplid GGrpuX0G+˙u=u
33 8 32 sylan YSubGrpGuX0G+˙u=u
34 28 31 33 3eqtr3d YSubGrpGuX0HFu=u
35 8 ad2antrr YSubGrpGuXvYwYGGrp
36 10 ad2antrr YSubGrpGuXvYwYYX
37 simprl YSubGrpGuXvYwYvY
38 36 37 sseldd YSubGrpGuXvYwYvX
39 simprr YSubGrpGuXvYwYwY
40 36 39 sseldd YSubGrpGuXvYwYwX
41 simplr YSubGrpGuXvYwYuX
42 1 2 grpass GGrpvXwXuXv+˙w+˙u=v+˙w+˙u
43 35 38 40 41 42 syl13anc YSubGrpGuXvYwYv+˙w+˙u=v+˙w+˙u
44 1 2 grpcl GGrpwXuXw+˙uX
45 35 40 41 44 syl3anc YSubGrpGuXvYwYw+˙uX
46 oveq12 x=vy=w+˙ux+˙y=v+˙w+˙u
47 ovex v+˙w+˙uV
48 46 4 47 ovmpoa vYw+˙uXvFw+˙u=v+˙w+˙u
49 37 45 48 syl2anc YSubGrpGuXvYwYvFw+˙u=v+˙w+˙u
50 43 49 eqtr4d YSubGrpGuXvYwYv+˙w+˙u=vFw+˙u
51 2 subgcl YSubGrpGvYwYv+˙wY
52 51 3expb YSubGrpGvYwYv+˙wY
53 52 adantlr YSubGrpGuXvYwYv+˙wY
54 oveq12 x=v+˙wy=ux+˙y=v+˙w+˙u
55 ovex v+˙w+˙uV
56 54 4 55 ovmpoa v+˙wYuXv+˙wFu=v+˙w+˙u
57 53 41 56 syl2anc YSubGrpGuXvYwYv+˙wFu=v+˙w+˙u
58 oveq12 x=wy=ux+˙y=w+˙u
59 ovex w+˙uV
60 58 4 59 ovmpoa wYuXwFu=w+˙u
61 39 41 60 syl2anc YSubGrpGuXvYwYwFu=w+˙u
62 61 oveq2d YSubGrpGuXvYwYvFwFu=vFw+˙u
63 50 57 62 3eqtr4d YSubGrpGuXvYwYv+˙wFu=vFwFu
64 63 ralrimivva YSubGrpGuXvYwYv+˙wFu=vFwFu
65 3 2 ressplusg YSubGrpG+˙=+H
66 65 oveqd YSubGrpGv+˙w=v+Hw
67 66 oveq1d YSubGrpGv+˙wFu=v+HwFu
68 67 eqeq1d YSubGrpGv+˙wFu=vFwFuv+HwFu=vFwFu
69 19 68 raleqbidv YSubGrpGwYv+˙wFu=vFwFuwBaseHv+HwFu=vFwFu
70 19 69 raleqbidv YSubGrpGvYwYv+˙wFu=vFwFuvBaseHwBaseHv+HwFu=vFwFu
71 70 biimpa YSubGrpGvYwYv+˙wFu=vFwFuvBaseHwBaseHv+HwFu=vFwFu
72 64 71 syldan YSubGrpGuXvBaseHwBaseHv+HwFu=vFwFu
73 34 72 jca YSubGrpGuX0HFu=uvBaseHwBaseHv+HwFu=vFwFu
74 73 ralrimiva YSubGrpGuX0HFu=uvBaseHwBaseHv+HwFu=vFwFu
75 22 74 jca YSubGrpGF:BaseH×XXuX0HFu=uvBaseHwBaseHv+HwFu=vFwFu
76 eqid BaseH=BaseH
77 eqid +H=+H
78 eqid 0H=0H
79 76 77 78 isga FHGrpActXHGrpXVF:BaseH×XXuX0HFu=uvBaseHwBaseHv+HwFu=vFwFu
80 7 75 79 sylanbrc YSubGrpGFHGrpActX