Metamath Proof Explorer


Theorem gcdmultipled

Description: The greatest common divisor of a nonnegative integer M and a multiple of it is M itself. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses gcdmultipled.1 φM0
gcdmultipled.2 φN
Assertion gcdmultipled φMgcd N M=M

Proof

Step Hyp Ref Expression
1 gcdmultipled.1 φM0
2 gcdmultipled.2 φN
3 1 nn0zd φM
4 0zd φ0
5 gcdaddm NM0Mgcd0=Mgcd0+ N M
6 2 3 4 5 syl3anc φMgcd0=Mgcd0+ N M
7 nn0gcdid0 M0Mgcd0=M
8 1 7 syl φMgcd0=M
9 2 3 zmulcld φ N M
10 9 zcnd φ N M
11 10 addlidd φ0+ N M= N M
12 11 oveq2d φMgcd0+ N M=Mgcd N M
13 6 8 12 3eqtr3rd φMgcd N M=M