Metamath Proof Explorer


Theorem gexcl

Description: The exponent of a group is a nonnegative integer. (Contributed by Mario Carneiro, 23-Apr-2016)

Ref Expression
Hypotheses gexcl.1 X=BaseG
gexcl.2 E=gExG
Assertion gexcl GVE0

Proof

Step Hyp Ref Expression
1 gexcl.1 X=BaseG
2 gexcl.2 E=gExG
3 eqid G=G
4 eqid 0G=0G
5 eqid y|xXyGx=0G=y|xXyGx=0G
6 1 3 4 2 5 gexlem1 GVE=0y|xXyGx=0G=Ey|xXyGx=0G
7 simpl E=0y|xXyGx=0G=E=0
8 elrabi Ey|xXyGx=0GE
9 7 8 orim12i E=0y|xXyGx=0G=Ey|xXyGx=0GE=0E
10 6 9 syl GVE=0E
11 10 orcomd GVEE=0
12 elnn0 E0EE=0
13 11 12 sylibr GVE0