Metamath Proof Explorer


Theorem gexcl

Description: The exponent of a group is a nonnegative integer. (Contributed by Mario Carneiro, 23-Apr-2016)

Ref Expression
Hypotheses gexcl.1 X = Base G
gexcl.2 E = gEx G
Assertion gexcl G V E 0

Proof

Step Hyp Ref Expression
1 gexcl.1 X = Base G
2 gexcl.2 E = gEx G
3 eqid G = G
4 eqid 0 G = 0 G
5 eqid y | x X y G x = 0 G = y | x X y G x = 0 G
6 1 3 4 2 5 gexlem1 G V E = 0 y | x X y G x = 0 G = E y | x X y G x = 0 G
7 simpl E = 0 y | x X y G x = 0 G = E = 0
8 elrabi E y | x X y G x = 0 G E
9 7 8 orim12i E = 0 y | x X y G x = 0 G = E y | x X y G x = 0 G E = 0 E
10 6 9 syl G V E = 0 E
11 10 orcomd G V E E = 0
12 elnn0 E 0 E E = 0
13 11 12 sylibr G V E 0