Metamath Proof Explorer


Theorem gg-cnfld1

Description: One is the unity element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014) Use mpocnfldmul . (Revised by GG, 31-Mar-2025)

Ref Expression
Assertion gg-cnfld1 1=1fld

Proof

Step Hyp Ref Expression
1 ax-1cn 1
2 mullid x1x=x
3 1cnd x1
4 3 ancri x1x
5 ovmpot 1x1u,vuvx=1x
6 5 eqcomd 1x1x=1u,vuvx
7 4 6 syl x1x=1u,vuvx
8 7 eqeq1d x1x=x1u,vuvx=x
9 8 biimpd x1x=x1u,vuvx=x
10 2 9 mpd x1u,vuvx=x
11 mulrid xx1=x
12 3 ancli xx1
13 ovmpot x1xu,vuv1=x1
14 12 13 syl xxu,vuv1=x1
15 14 eqcomd xx1=xu,vuv1
16 15 eqeq1d xx1=xxu,vuv1=x
17 16 biimpd xx1=xxu,vuv1=x
18 11 17 mpd xxu,vuv1=x
19 10 18 jca x1u,vuvx=xxu,vuv1=x
20 19 rgen x1u,vuvx=xxu,vuv1=x
21 1 20 pm3.2i 1x1u,vuvx=xxu,vuv1=x
22 cnring fldRing
23 cnfldbas =Basefld
24 mpocnfldmul u,vuv=fld
25 eqid 1fld=1fld
26 23 24 25 isringid fldRing1x1u,vuvx=xxu,vuv1=x1fld=1
27 22 26 ax-mp 1x1u,vuvx=xxu,vuv1=x1fld=1
28 21 27 mpbi 1fld=1
29 28 eqcomi 1=1fld