Description: One is the unity element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014) Use mpocnfldmul . (Revised by GG, 31-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | gg-cnfld1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn | |
|
2 | mullid | |
|
3 | 1cnd | |
|
4 | 3 | ancri | |
5 | ovmpot | |
|
6 | 5 | eqcomd | |
7 | 4 6 | syl | |
8 | 7 | eqeq1d | |
9 | 8 | biimpd | |
10 | 2 9 | mpd | |
11 | mulrid | |
|
12 | 3 | ancli | |
13 | ovmpot | |
|
14 | 12 13 | syl | |
15 | 14 | eqcomd | |
16 | 15 | eqeq1d | |
17 | 16 | biimpd | |
18 | 11 17 | mpd | |
19 | 10 18 | jca | |
20 | 19 | rgen | |
21 | 1 20 | pm3.2i | |
22 | cnring | |
|
23 | cnfldbas | |
|
24 | mpocnfldmul | |
|
25 | eqid | |
|
26 | 23 24 25 | isringid | |
27 | 22 26 | ax-mp | |
28 | 21 27 | mpbi | |
29 | 28 | eqcomi | |