Metamath Proof Explorer


Theorem gg-iimulcn

Description: Multiplication is a continuous function on the unit interval. (Contributed by Mario Carneiro, 8-Jun-2014) Avoid ax-mulf . (Revised by GG, 16-Mar-2025)

Ref Expression
Assertion gg-iimulcn x01,y01xyII×tIICnII

Proof

Step Hyp Ref Expression
1 eqid TopOpenfld=TopOpenfld
2 1 dfii3 II=TopOpenfld𝑡01
3 1 cnfldtopon TopOpenfldTopOn
4 3 a1i TopOpenfldTopOn
5 unitsscn 01
6 5 a1i 01
7 1 mpomulcn x,yxyTopOpenfld×tTopOpenfldCnTopOpenfld
8 7 a1i x,yxyTopOpenfld×tTopOpenfldCnTopOpenfld
9 2 4 6 2 4 6 8 cnmpt2res x01,y01xyII×tIICnTopOpenfld
10 9 mptru x01,y01xyII×tIICnTopOpenfld
11 iimulcl x01y01xy01
12 11 rgen2 x01y01xy01
13 eqid x01,y01xy=x01,y01xy
14 13 fmpo x01y01xy01x01,y01xy:01×0101
15 frn x01,y01xy:01×0101ranx01,y01xy01
16 14 15 sylbi x01y01xy01ranx01,y01xy01
17 12 16 ax-mp ranx01,y01xy01
18 cnrest2 TopOpenfldTopOnranx01,y01xy0101x01,y01xyII×tIICnTopOpenfldx01,y01xyII×tIICnTopOpenfld𝑡01
19 3 17 5 18 mp3an x01,y01xyII×tIICnTopOpenfldx01,y01xyII×tIICnTopOpenfld𝑡01
20 10 19 mpbi x01,y01xyII×tIICnTopOpenfld𝑡01
21 2 oveq2i II×tIICnII=II×tIICnTopOpenfld𝑡01
22 20 21 eleqtrri x01,y01xyII×tIICnII