Metamath Proof Explorer


Theorem ghmabl

Description: The image of an abelian group G under a group homomorphism F is an abelian group. (Contributed by Mario Carneiro, 12-May-2014) (Revised by Thierry Arnoux, 26-Jan-2020)

Ref Expression
Hypotheses ghmabl.x X=BaseG
ghmabl.y Y=BaseH
ghmabl.p +˙=+G
ghmabl.q ˙=+H
ghmabl.f φxXyXFx+˙y=Fx˙Fy
ghmabl.1 φF:XontoY
ghmabl.3 φGAbel
Assertion ghmabl φHAbel

Proof

Step Hyp Ref Expression
1 ghmabl.x X=BaseG
2 ghmabl.y Y=BaseH
3 ghmabl.p +˙=+G
4 ghmabl.q ˙=+H
5 ghmabl.f φxXyXFx+˙y=Fx˙Fy
6 ghmabl.1 φF:XontoY
7 ghmabl.3 φGAbel
8 ablgrp GAbelGGrp
9 7 8 syl φGGrp
10 5 1 2 3 4 6 9 ghmgrp φHGrp
11 ablcmn GAbelGCMnd
12 7 11 syl φGCMnd
13 1 2 3 4 5 6 12 ghmcmn φHCMnd
14 isabl HAbelHGrpHCMnd
15 10 13 14 sylanbrc φHAbel