Metamath Proof Explorer


Theorem ghmco

Description: The composition of group homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Assertion ghmco FTGrpHomUGSGrpHomTFGSGrpHomU

Proof

Step Hyp Ref Expression
1 ghmmhm FTGrpHomUFTMndHomU
2 ghmmhm GSGrpHomTGSMndHomT
3 mhmco FTMndHomUGSMndHomTFGSMndHomU
4 1 2 3 syl2an FTGrpHomUGSGrpHomTFGSMndHomU
5 ghmgrp1 GSGrpHomTSGrp
6 ghmgrp2 FTGrpHomUUGrp
7 ghmmhmb SGrpUGrpSGrpHomU=SMndHomU
8 5 6 7 syl2anr FTGrpHomUGSGrpHomTSGrpHomU=SMndHomU
9 4 8 eleqtrrd FTGrpHomUGSGrpHomTFGSGrpHomU