Metamath Proof Explorer


Theorem ghmghmrn

Description: A group homomorphism from G to H is also a group homomorphism from G to its image in H . (Contributed by Paul Chapman, 3-Mar-2008) (Revised by AV, 26-Aug-2021)

Ref Expression
Hypothesis ghmghmrn.u U=T𝑠ranF
Assertion ghmghmrn FSGrpHomTFSGrpHomU

Proof

Step Hyp Ref Expression
1 ghmghmrn.u U=T𝑠ranF
2 ghmrn FSGrpHomTranFSubGrpT
3 ssid ranFranF
4 1 resghm2b ranFSubGrpTranFranFFSGrpHomTFSGrpHomU
5 3 4 mpan2 ranFSubGrpTFSGrpHomTFSGrpHomU
6 5 biimpd ranFSubGrpTFSGrpHomTFSGrpHomU
7 2 6 mpcom FSGrpHomTFSGrpHomU