Metamath Proof Explorer


Theorem ghomidOLD

Description: Obsolete version of ghmid as of 15-Mar-2020. A group homomorphism maps identity element to identity element. (Contributed by Paul Chapman, 3-Mar-2008) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses ghomidOLD.1 U = GId G
ghomidOLD.2 T = GId H
Assertion ghomidOLD G GrpOp H GrpOp F G GrpOpHom H F U = T

Proof

Step Hyp Ref Expression
1 ghomidOLD.1 U = GId G
2 ghomidOLD.2 T = GId H
3 eqid ran G = ran G
4 3 1 grpoidcl G GrpOp U ran G
5 4 3ad2ant1 G GrpOp H GrpOp F G GrpOpHom H U ran G
6 5 5 jca G GrpOp H GrpOp F G GrpOpHom H U ran G U ran G
7 3 ghomlinOLD G GrpOp H GrpOp F G GrpOpHom H U ran G U ran G F U H F U = F U G U
8 6 7 mpdan G GrpOp H GrpOp F G GrpOpHom H F U H F U = F U G U
9 3 1 grpolid G GrpOp U ran G U G U = U
10 4 9 mpdan G GrpOp U G U = U
11 10 fveq2d G GrpOp F U G U = F U
12 11 3ad2ant1 G GrpOp H GrpOp F G GrpOpHom H F U G U = F U
13 8 12 eqtrd G GrpOp H GrpOp F G GrpOpHom H F U H F U = F U
14 eqid ran H = ran H
15 3 14 elghomOLD G GrpOp H GrpOp F G GrpOpHom H F : ran G ran H x ran G y ran G F x H F y = F x G y
16 15 biimp3a G GrpOp H GrpOp F G GrpOpHom H F : ran G ran H x ran G y ran G F x H F y = F x G y
17 16 simpld G GrpOp H GrpOp F G GrpOpHom H F : ran G ran H
18 17 5 ffvelrnd G GrpOp H GrpOp F G GrpOpHom H F U ran H
19 14 2 grpoid H GrpOp F U ran H F U = T F U H F U = F U
20 19 ex H GrpOp F U ran H F U = T F U H F U = F U
21 20 3ad2ant2 G GrpOp H GrpOp F G GrpOpHom H F U ran H F U = T F U H F U = F U
22 18 21 mpd G GrpOp H GrpOp F G GrpOpHom H F U = T F U H F U = F U
23 13 22 mpbird G GrpOp H GrpOp F G GrpOpHom H F U = T