Metamath Proof Explorer


Theorem grpoidcl

Description: The identity element of a group belongs to the group. (Contributed by NM, 24-Oct-2006) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses grpoidval.1 X=ranG
grpoidval.2 U=GIdG
Assertion grpoidcl GGrpOpUX

Proof

Step Hyp Ref Expression
1 grpoidval.1 X=ranG
2 grpoidval.2 U=GIdG
3 1 2 grpoidval GGrpOpU=ιuX|xXuGx=x
4 1 grpoideu GGrpOp∃!uXxXuGx=x
5 riotacl ∃!uXxXuGx=xιuX|xXuGx=xX
6 4 5 syl GGrpOpιuX|xXuGx=xX
7 3 6 eqeltrd GGrpOpUX