Metamath Proof Explorer


Theorem giclcl

Description: Isomorphism implies the left side is a group. (Contributed by Stefan O'Rear, 25-Jan-2015)

Ref Expression
Assertion giclcl R 𝑔 S R Grp

Proof

Step Hyp Ref Expression
1 brgic R 𝑔 S R GrpIso S
2 n0 R GrpIso S f f R GrpIso S
3 1 2 bitri R 𝑔 S f f R GrpIso S
4 gimghm f R GrpIso S f R GrpHom S
5 ghmgrp1 f R GrpHom S R Grp
6 4 5 syl f R GrpIso S R Grp
7 6 exlimiv f f R GrpIso S R Grp
8 3 7 sylbi R 𝑔 S R Grp