Metamath Proof Explorer


Theorem giclcl

Description: Isomorphism implies the left side is a group. (Contributed by Stefan O'Rear, 25-Jan-2015)

Ref Expression
Assertion giclcl R𝑔SRGrp

Proof

Step Hyp Ref Expression
1 brgic R𝑔SRGrpIsoS
2 n0 RGrpIsoSffRGrpIsoS
3 1 2 bitri R𝑔SffRGrpIsoS
4 gimghm fRGrpIsoSfRGrpHomS
5 ghmgrp1 fRGrpHomSRGrp
6 4 5 syl fRGrpIsoSRGrp
7 6 exlimiv ffRGrpIsoSRGrp
8 3 7 sylbi R𝑔SRGrp