Metamath Proof Explorer


Theorem gim0to0

Description: A group isomorphism maps the zero of one group (and only the zero) to the zero of the other group. (Contributed by AV, 24-Oct-2019) (Revised by Thierry Arnoux, 23-May-2023)

Ref Expression
Hypotheses gim0to0ALT.a A=BaseR
gim0to0ALT.b B=BaseS
gim0to0ALT.n N=0S
gim0to0ALT.0 0˙=0R
Assertion gim0to0 FRGrpIsoSXAFX=NX=0˙

Proof

Step Hyp Ref Expression
1 gim0to0ALT.a A=BaseR
2 gim0to0ALT.b B=BaseS
3 gim0to0ALT.n N=0S
4 gim0to0ALT.0 0˙=0R
5 gimghm FRGrpIsoSFRGrpHomS
6 1 2 gimf1o FRGrpIsoSF:A1-1 ontoB
7 f1of1 F:A1-1 ontoBF:A1-1B
8 6 7 syl FRGrpIsoSF:A1-1B
9 5 8 jca FRGrpIsoSFRGrpHomSF:A1-1B
10 9 anim1i FRGrpIsoSXAFRGrpHomSF:A1-1BXA
11 df-3an FRGrpHomSF:A1-1BXAFRGrpHomSF:A1-1BXA
12 10 11 sylibr FRGrpIsoSXAFRGrpHomSF:A1-1BXA
13 1 2 3 4 f1ghm0to0 FRGrpHomSF:A1-1BXAFX=NX=0˙
14 12 13 syl FRGrpIsoSXAFX=NX=0˙