Description: A group isomorphism maps the zero of one group (and only the zero) to the zero of the other group. (Contributed by AV, 24-Oct-2019) (Revised by Thierry Arnoux, 23-May-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gim0to0ALT.a | |
|
gim0to0ALT.b | |
||
gim0to0ALT.n | |
||
gim0to0ALT.0 | |
||
Assertion | gim0to0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gim0to0ALT.a | |
|
2 | gim0to0ALT.b | |
|
3 | gim0to0ALT.n | |
|
4 | gim0to0ALT.0 | |
|
5 | gimghm | |
|
6 | 1 2 | gimf1o | |
7 | f1of1 | |
|
8 | 6 7 | syl | |
9 | 5 8 | jca | |
10 | 9 | anim1i | |
11 | df-3an | |
|
12 | 10 11 | sylibr | |
13 | 1 2 3 4 | f1ghm0to0 | |
14 | 12 13 | syl | |