Metamath Proof Explorer


Theorem gimcnv

Description: The converse of a bijective group homomorphism is a bijective group homomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015) (Revised by Mario Carneiro, 6-May-2015)

Ref Expression
Assertion gimcnv FSGrpIsoTF-1TGrpIsoS

Proof

Step Hyp Ref Expression
1 eqid BaseS=BaseS
2 eqid BaseT=BaseT
3 1 2 ghmf FSGrpHomTF:BaseSBaseT
4 frel F:BaseSBaseTRelF
5 dfrel2 RelFF-1-1=F
6 4 5 sylib F:BaseSBaseTF-1-1=F
7 3 6 syl FSGrpHomTF-1-1=F
8 id FSGrpHomTFSGrpHomT
9 7 8 eqeltrd FSGrpHomTF-1-1SGrpHomT
10 9 anim1ci FSGrpHomTF-1TGrpHomSF-1TGrpHomSF-1-1SGrpHomT
11 isgim2 FSGrpIsoTFSGrpHomTF-1TGrpHomS
12 isgim2 F-1TGrpIsoSF-1TGrpHomSF-1-1SGrpHomT
13 10 11 12 3imtr4i FSGrpIsoTF-1TGrpIsoS