Metamath Proof Explorer


Theorem gimco

Description: The composition of group isomorphisms is a group isomorphism. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Assertion gimco FTGrpIsoUGSGrpIsoTFGSGrpIsoU

Proof

Step Hyp Ref Expression
1 isgim2 FTGrpIsoUFTGrpHomUF-1UGrpHomT
2 isgim2 GSGrpIsoTGSGrpHomTG-1TGrpHomS
3 ghmco FTGrpHomUGSGrpHomTFGSGrpHomU
4 cnvco FG-1=G-1F-1
5 ghmco G-1TGrpHomSF-1UGrpHomTG-1F-1UGrpHomS
6 5 ancoms F-1UGrpHomTG-1TGrpHomSG-1F-1UGrpHomS
7 4 6 eqeltrid F-1UGrpHomTG-1TGrpHomSFG-1UGrpHomS
8 3 7 anim12i FTGrpHomUGSGrpHomTF-1UGrpHomTG-1TGrpHomSFGSGrpHomUFG-1UGrpHomS
9 8 an4s FTGrpHomUF-1UGrpHomTGSGrpHomTG-1TGrpHomSFGSGrpHomUFG-1UGrpHomS
10 1 2 9 syl2anb FTGrpIsoUGSGrpIsoTFGSGrpHomUFG-1UGrpHomS
11 isgim2 FGSGrpIsoUFGSGrpHomUFG-1UGrpHomS
12 10 11 sylibr FTGrpIsoUGSGrpIsoTFGSGrpIsoU