Description: The composition of group isomorphisms is a group isomorphism. (Contributed by Mario Carneiro, 21-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | gimco | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isgim2 | |
|
2 | isgim2 | |
|
3 | ghmco | |
|
4 | cnvco | |
|
5 | ghmco | |
|
6 | 5 | ancoms | |
7 | 4 6 | eqeltrid | |
8 | 3 7 | anim12i | |
9 | 8 | an4s | |
10 | 1 2 9 | syl2anb | |
11 | isgim2 | |
|
12 | 10 11 | sylibr | |