Metamath Proof Explorer


Theorem gneispa

Description: Each point p of the neighborhood space has at least one neighborhood; each neighborhood of p contains p . Axiom A of Seifert and Threlfall. (Contributed by RP, 5-Apr-2021)

Ref Expression
Hypothesis gneispace.x X = J
Assertion gneispa J Top p X nei J p n nei J p p n

Proof

Step Hyp Ref Expression
1 gneispace.x X = J
2 snssi p X p X
3 1 tpnei J Top p X X nei J p
4 2 3 syl5ib J Top p X X nei J p
5 4 imp J Top p X X nei J p
6 5 ne0d J Top p X nei J p
7 elnei J Top p X n nei J p p n
8 7 3expia J Top p X n nei J p p n
9 8 ralrimiv J Top p X n nei J p p n
10 6 9 jca J Top p X nei J p n nei J p p n
11 10 ralrimiva J Top p X nei J p n nei J p p n