Metamath Proof Explorer


Theorem gneispa

Description: Each point p of the neighborhood space has at least one neighborhood; each neighborhood of p contains p . Axiom A of Seifert and Threlfall. (Contributed by RP, 5-Apr-2021)

Ref Expression
Hypothesis gneispace.x X=J
Assertion gneispa JToppXneiJpnneiJppn

Proof

Step Hyp Ref Expression
1 gneispace.x X=J
2 snssi pXpX
3 1 tpnei JToppXXneiJp
4 2 3 imbitrid JToppXXneiJp
5 4 imp JToppXXneiJp
6 5 ne0d JToppXneiJp
7 elnei JToppXnneiJppn
8 7 3expia JToppXnneiJppn
9 8 ralrimiv JToppXnneiJppn
10 6 9 jca JToppXneiJpnneiJppn
11 10 ralrimiva JToppXneiJpnneiJppn