Metamath Proof Explorer


Theorem gneispa

Description: Each point p of the neighborhood space has at least one neighborhood; each neighborhood of p contains p . Axiom A of Seifert and Threlfall. (Contributed by RP, 5-Apr-2021)

Ref Expression
Hypothesis gneispace.x 𝑋 = 𝐽
Assertion gneispa ( 𝐽 ∈ Top → ∀ 𝑝𝑋 ( ( ( nei ‘ 𝐽 ) ‘ { 𝑝 } ) ≠ ∅ ∧ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑝 } ) 𝑝𝑛 ) )

Proof

Step Hyp Ref Expression
1 gneispace.x 𝑋 = 𝐽
2 snssi ( 𝑝𝑋 → { 𝑝 } ⊆ 𝑋 )
3 1 tpnei ( 𝐽 ∈ Top → ( { 𝑝 } ⊆ 𝑋𝑋 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑝 } ) ) )
4 2 3 syl5ib ( 𝐽 ∈ Top → ( 𝑝𝑋𝑋 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑝 } ) ) )
5 4 imp ( ( 𝐽 ∈ Top ∧ 𝑝𝑋 ) → 𝑋 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑝 } ) )
6 5 ne0d ( ( 𝐽 ∈ Top ∧ 𝑝𝑋 ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑝 } ) ≠ ∅ )
7 elnei ( ( 𝐽 ∈ Top ∧ 𝑝𝑋𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑝 } ) ) → 𝑝𝑛 )
8 7 3expia ( ( 𝐽 ∈ Top ∧ 𝑝𝑋 ) → ( 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑝 } ) → 𝑝𝑛 ) )
9 8 ralrimiv ( ( 𝐽 ∈ Top ∧ 𝑝𝑋 ) → ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑝 } ) 𝑝𝑛 )
10 6 9 jca ( ( 𝐽 ∈ Top ∧ 𝑝𝑋 ) → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑝 } ) ≠ ∅ ∧ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑝 } ) 𝑝𝑛 ) )
11 10 ralrimiva ( 𝐽 ∈ Top → ∀ 𝑝𝑋 ( ( ( nei ‘ 𝐽 ) ‘ { 𝑝 } ) ≠ ∅ ∧ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑝 } ) 𝑝𝑛 ) )