Step |
Hyp |
Ref |
Expression |
1 |
|
gneispace.x |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
snssi |
⊢ ( 𝑝 ∈ 𝑋 → { 𝑝 } ⊆ 𝑋 ) |
3 |
1
|
tpnei |
⊢ ( 𝐽 ∈ Top → ( { 𝑝 } ⊆ 𝑋 ↔ 𝑋 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑝 } ) ) ) |
4 |
2 3
|
syl5ib |
⊢ ( 𝐽 ∈ Top → ( 𝑝 ∈ 𝑋 → 𝑋 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑝 } ) ) ) |
5 |
4
|
imp |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑝 ∈ 𝑋 ) → 𝑋 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑝 } ) ) |
6 |
5
|
ne0d |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑝 ∈ 𝑋 ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑝 } ) ≠ ∅ ) |
7 |
|
elnei |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑝 ∈ 𝑋 ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑝 } ) ) → 𝑝 ∈ 𝑛 ) |
8 |
7
|
3expia |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑝 ∈ 𝑋 ) → ( 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑝 } ) → 𝑝 ∈ 𝑛 ) ) |
9 |
8
|
ralrimiv |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑝 ∈ 𝑋 ) → ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑝 } ) 𝑝 ∈ 𝑛 ) |
10 |
6 9
|
jca |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑝 ∈ 𝑋 ) → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑝 } ) ≠ ∅ ∧ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑝 } ) 𝑝 ∈ 𝑛 ) ) |
11 |
10
|
ralrimiva |
⊢ ( 𝐽 ∈ Top → ∀ 𝑝 ∈ 𝑋 ( ( ( nei ‘ 𝐽 ) ‘ { 𝑝 } ) ≠ ∅ ∧ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑝 } ) 𝑝 ∈ 𝑛 ) ) |