Metamath Proof Explorer


Theorem gneispa

Description: Each point p of the neighborhood space has at least one neighborhood; each neighborhood of p contains p . Axiom A of Seifert and Threlfall. (Contributed by RP, 5-Apr-2021)

Ref Expression
Hypothesis gneispace.x
|- X = U. J
Assertion gneispa
|- ( J e. Top -> A. p e. X ( ( ( nei ` J ) ` { p } ) =/= (/) /\ A. n e. ( ( nei ` J ) ` { p } ) p e. n ) )

Proof

Step Hyp Ref Expression
1 gneispace.x
 |-  X = U. J
2 snssi
 |-  ( p e. X -> { p } C_ X )
3 1 tpnei
 |-  ( J e. Top -> ( { p } C_ X <-> X e. ( ( nei ` J ) ` { p } ) ) )
4 2 3 syl5ib
 |-  ( J e. Top -> ( p e. X -> X e. ( ( nei ` J ) ` { p } ) ) )
5 4 imp
 |-  ( ( J e. Top /\ p e. X ) -> X e. ( ( nei ` J ) ` { p } ) )
6 5 ne0d
 |-  ( ( J e. Top /\ p e. X ) -> ( ( nei ` J ) ` { p } ) =/= (/) )
7 elnei
 |-  ( ( J e. Top /\ p e. X /\ n e. ( ( nei ` J ) ` { p } ) ) -> p e. n )
8 7 3expia
 |-  ( ( J e. Top /\ p e. X ) -> ( n e. ( ( nei ` J ) ` { p } ) -> p e. n ) )
9 8 ralrimiv
 |-  ( ( J e. Top /\ p e. X ) -> A. n e. ( ( nei ` J ) ` { p } ) p e. n )
10 6 9 jca
 |-  ( ( J e. Top /\ p e. X ) -> ( ( ( nei ` J ) ` { p } ) =/= (/) /\ A. n e. ( ( nei ` J ) ` { p } ) p e. n ) )
11 10 ralrimiva
 |-  ( J e. Top -> A. p e. X ( ( ( nei ` J ) ` { p } ) =/= (/) /\ A. n e. ( ( nei ` J ) ` { p } ) p e. n ) )