Metamath Proof Explorer


Theorem gneispacef

Description: A generic neighborhood space is a function with a range that is a subset of the powerset of the powerset of its domain. (Contributed by RP, 15-Apr-2021)

Ref Expression
Hypothesis gneispace.a A=f|f:domf𝒫𝒫domfpdomfnfppns𝒫domfnssfp
Assertion gneispacef FAF:domF𝒫𝒫domF

Proof

Step Hyp Ref Expression
1 gneispace.a A=f|f:domf𝒫𝒫domfpdomfnfppns𝒫domfnssfp
2 1 gneispace2 FAFAF:domF𝒫𝒫domFpdomFnFppns𝒫domFnssFp
3 2 ibi FAF:domF𝒫𝒫domFpdomFnFppns𝒫domFnssFp
4 3 simpld FAF:domF𝒫𝒫domF