Metamath Proof Explorer


Theorem gpgiedgdmel

Description: An index of edges of the generalized Petersen graph GPG(N,K). (Contributed by AV, 2-Nov-2025)

Ref Expression
Hypotheses gpgvtxel.i I = 0 ..^ N
gpgvtxel.j J = 1 ..^ N 2
gpgvtxel.g No typesetting found for |- G = ( N gPetersenGr K ) with typecode |-
Assertion gpgiedgdmel N K J X dom iEdg G x I X = 0 x 0 x + 1 mod N X = 0 x 1 x X = 1 x 1 x + K mod N

Proof

Step Hyp Ref Expression
1 gpgvtxel.i I = 0 ..^ N
2 gpgvtxel.j J = 1 ..^ N 2
3 gpgvtxel.g Could not format G = ( N gPetersenGr K ) : No typesetting found for |- G = ( N gPetersenGr K ) with typecode |-
4 3 fveq2i Could not format ( iEdg ` G ) = ( iEdg ` ( N gPetersenGr K ) ) : No typesetting found for |- ( iEdg ` G ) = ( iEdg ` ( N gPetersenGr K ) ) with typecode |-
5 2 1 gpgiedg Could not format ( ( N e. NN /\ K e. J ) -> ( iEdg ` ( N gPetersenGr K ) ) = ( _I |` { e e. ~P ( { 0 , 1 } X. I ) | E. x e. I ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) ) : No typesetting found for |- ( ( N e. NN /\ K e. J ) -> ( iEdg ` ( N gPetersenGr K ) ) = ( _I |` { e e. ~P ( { 0 , 1 } X. I ) | E. x e. I ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) ) with typecode |-
6 4 5 eqtrid N K J iEdg G = I e 𝒫 0 1 × I | x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N
7 6 dmeqd N K J dom iEdg G = dom I e 𝒫 0 1 × I | x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N
8 7 eleq2d N K J X dom iEdg G X dom I e 𝒫 0 1 × I | x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N
9 dmresi dom I e 𝒫 0 1 × I | x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N = e 𝒫 0 1 × I | x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N
10 9 a1i N K J dom I e 𝒫 0 1 × I | x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N = e 𝒫 0 1 × I | x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N
11 10 eleq2d N K J X dom I e 𝒫 0 1 × I | x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N X e 𝒫 0 1 × I | x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N
12 eqeq1 e = X e = 0 x 0 x + 1 mod N X = 0 x 0 x + 1 mod N
13 eqeq1 e = X e = 0 x 1 x X = 0 x 1 x
14 eqeq1 e = X e = 1 x 1 x + K mod N X = 1 x 1 x + K mod N
15 12 13 14 3orbi123d e = X e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N X = 0 x 0 x + 1 mod N X = 0 x 1 x X = 1 x 1 x + K mod N
16 15 rexbidv e = X x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N x I X = 0 x 0 x + 1 mod N X = 0 x 1 x X = 1 x 1 x + K mod N
17 16 elrab X e 𝒫 0 1 × I | x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N X 𝒫 0 1 × I x I X = 0 x 0 x + 1 mod N X = 0 x 1 x X = 1 x 1 x + K mod N
18 1 2 gpgiedgdmellem N K J x I X = 0 x 0 x + 1 mod N X = 0 x 1 x X = 1 x 1 x + K mod N X 𝒫 0 1 × I
19 18 pm4.71rd N K J x I X = 0 x 0 x + 1 mod N X = 0 x 1 x X = 1 x 1 x + K mod N X 𝒫 0 1 × I x I X = 0 x 0 x + 1 mod N X = 0 x 1 x X = 1 x 1 x + K mod N
20 17 19 bitr4id N K J X e 𝒫 0 1 × I | x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N x I X = 0 x 0 x + 1 mod N X = 0 x 1 x X = 1 x 1 x + K mod N
21 8 11 20 3bitrd N K J X dom iEdg G x I X = 0 x 0 x + 1 mod N X = 0 x 1 x X = 1 x 1 x + K mod N