Metamath Proof Explorer


Theorem gpgorder

Description: The order of the generalized Petersen graph GPG(N,K). (Contributed by AV, 29-Sep-2025)

Ref Expression
Hypothesis gpgorder.j J = 1 ..^ N 2
Assertion gpgorder Could not format assertion : No typesetting found for |- ( ( N e. NN /\ K e. J ) -> ( # ` ( Vtx ` ( N gPetersenGr K ) ) ) = ( 2 x. N ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 gpgorder.j J = 1 ..^ N 2
2 eqid 0 ..^ N = 0 ..^ N
3 1 2 gpgvtx Could not format ( ( N e. NN /\ K e. J ) -> ( Vtx ` ( N gPetersenGr K ) ) = ( { 0 , 1 } X. ( 0 ..^ N ) ) ) : No typesetting found for |- ( ( N e. NN /\ K e. J ) -> ( Vtx ` ( N gPetersenGr K ) ) = ( { 0 , 1 } X. ( 0 ..^ N ) ) ) with typecode |-
4 3 fveq2d Could not format ( ( N e. NN /\ K e. J ) -> ( # ` ( Vtx ` ( N gPetersenGr K ) ) ) = ( # ` ( { 0 , 1 } X. ( 0 ..^ N ) ) ) ) : No typesetting found for |- ( ( N e. NN /\ K e. J ) -> ( # ` ( Vtx ` ( N gPetersenGr K ) ) ) = ( # ` ( { 0 , 1 } X. ( 0 ..^ N ) ) ) ) with typecode |-
5 prfi 0 1 Fin
6 fzofi 0 ..^ N Fin
7 5 6 pm3.2i 0 1 Fin 0 ..^ N Fin
8 hashxp 0 1 Fin 0 ..^ N Fin 0 1 × 0 ..^ N = 0 1 0 ..^ N
9 7 8 mp1i N K J 0 1 × 0 ..^ N = 0 1 0 ..^ N
10 prhash2ex 0 1 = 2
11 10 a1i N K J 0 1 = 2
12 nnnn0 N N 0
13 hashfzo0 N 0 0 ..^ N = N
14 12 13 syl N 0 ..^ N = N
15 14 adantr N K J 0 ..^ N = N
16 11 15 oveq12d N K J 0 1 0 ..^ N = 2 N
17 4 9 16 3eqtrd Could not format ( ( N e. NN /\ K e. J ) -> ( # ` ( Vtx ` ( N gPetersenGr K ) ) ) = ( 2 x. N ) ) : No typesetting found for |- ( ( N e. NN /\ K e. J ) -> ( # ` ( Vtx ` ( N gPetersenGr K ) ) ) = ( 2 x. N ) ) with typecode |-