Metamath Proof Explorer


Theorem gpgprismgr4cycllem6

Description: Lemma 6 for gpgprismgr4cycl0 : the cycle <. P , F >. is closed, i.e., the first and the last vertex are identical. (Contributed by AV, 1-Nov-2025)

Ref Expression
Hypothesis gpgprismgr4cycl.p P = ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩
Assertion gpgprismgr4cycllem6 P 0 = P 4

Proof

Step Hyp Ref Expression
1 gpgprismgr4cycl.p P = ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩
2 opex 0 0 V
3 df-s5 ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ = ⟨“ 0 0 0 1 1 1 1 0 ”⟩ ++ ⟨“ 0 0 ”⟩
4 s4cli ⟨“ 0 0 0 1 1 1 1 0 ”⟩ Word V
5 s4len ⟨“ 0 0 0 1 1 1 1 0 ”⟩ = 4
6 s4fv0 0 0 V ⟨“ 0 0 0 1 1 1 1 0 ”⟩ 0 = 0 0
7 0nn0 0 0
8 4pos 0 < 4
9 3 4 5 6 7 8 cats1fv 0 0 V ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ 0 = 0 0
10 2 9 ax-mp ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ 0 = 0 0
11 3 4 5 cats1fvn 0 0 V ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ 4 = 0 0
12 2 11 ax-mp ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ 4 = 0 0
13 10 12 eqtr4i ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ 0 = ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ 4
14 1 fveq1i P 0 = ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ 0
15 1 fveq1i P 4 = ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ 4
16 13 14 15 3eqtr4i P 0 = P 4