Metamath Proof Explorer


Theorem gpgprismgriedgdmel

Description: An index of edges of the generalized Petersen graph GPG(N,1). (Contributed by AV, 2-Nov-2025)

Ref Expression
Hypotheses gpgprismgriedgdmel.i I = 0 ..^ N
gpgprismgriedgdmel.g No typesetting found for |- G = ( N gPetersenGr 1 ) with typecode |-
Assertion gpgprismgriedgdmel N 3 X dom iEdg G x I X = 0 x 0 x + 1 mod N X = 0 x 1 x X = 1 x 1 x + 1 mod N

Proof

Step Hyp Ref Expression
1 gpgprismgriedgdmel.i I = 0 ..^ N
2 gpgprismgriedgdmel.g Could not format G = ( N gPetersenGr 1 ) : No typesetting found for |- G = ( N gPetersenGr 1 ) with typecode |-
3 eluzge3nn N 3 N
4 1elfzo1ceilhalf1 N 3 1 1 ..^ N 2
5 eqid 1 ..^ N 2 = 1 ..^ N 2
6 1 5 2 gpgiedgdmel N 1 1 ..^ N 2 X dom iEdg G x I X = 0 x 0 x + 1 mod N X = 0 x 1 x X = 1 x 1 x + 1 mod N
7 3 4 6 syl2anc N 3 X dom iEdg G x I X = 0 x 0 x + 1 mod N X = 0 x 1 x X = 1 x 1 x + 1 mod N