Metamath Proof Explorer


Theorem grpinvval

Description: The inverse of a group element. (Contributed by NM, 24-Aug-2011) (Revised by Mario Carneiro, 7-Aug-2013)

Ref Expression
Hypotheses grpinvval.b B=BaseG
grpinvval.p +˙=+G
grpinvval.o 0˙=0G
grpinvval.n N=invgG
Assertion grpinvval XBNX=ιyB|y+˙X=0˙

Proof

Step Hyp Ref Expression
1 grpinvval.b B=BaseG
2 grpinvval.p +˙=+G
3 grpinvval.o 0˙=0G
4 grpinvval.n N=invgG
5 oveq2 x=Xy+˙x=y+˙X
6 5 eqeq1d x=Xy+˙x=0˙y+˙X=0˙
7 6 riotabidv x=XιyB|y+˙x=0˙=ιyB|y+˙X=0˙
8 1 2 3 4 grpinvfval N=xBιyB|y+˙x=0˙
9 riotaex ιyB|y+˙X=0˙V
10 7 8 9 fvmpt XBNX=ιyB|y+˙X=0˙