Metamath Proof Explorer


Theorem grpodivdiv

Description: Double group division. (Contributed by NM, 24-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses grpdivf.1 X=ranG
grpdivf.3 D=/gG
Assertion grpodivdiv GGrpOpAXBXCXADBDC=AGCDB

Proof

Step Hyp Ref Expression
1 grpdivf.1 X=ranG
2 grpdivf.3 D=/gG
3 simpl GGrpOpAXBXCXGGrpOp
4 simpr1 GGrpOpAXBXCXAX
5 1 2 grpodivcl GGrpOpBXCXBDCX
6 5 3adant3r1 GGrpOpAXBXCXBDCX
7 eqid invG=invG
8 1 7 2 grpodivval GGrpOpAXBDCXADBDC=AGinvGBDC
9 3 4 6 8 syl3anc GGrpOpAXBXCXADBDC=AGinvGBDC
10 1 7 2 grpoinvdiv GGrpOpBXCXinvGBDC=CDB
11 10 3adant3r1 GGrpOpAXBXCXinvGBDC=CDB
12 11 oveq2d GGrpOpAXBXCXAGinvGBDC=AGCDB
13 9 12 eqtrd GGrpOpAXBXCXADBDC=AGCDB