Metamath Proof Explorer


Theorem grpoidinvlem4

Description: Lemma for grpoidinv . (Contributed by NM, 14-Oct-2006) (New usage is discouraged.)

Ref Expression
Hypothesis grpfo.1 X=ranG
Assertion grpoidinvlem4 GGrpOpAXyXyGA=UAGy=UAGU=UGA

Proof

Step Hyp Ref Expression
1 grpfo.1 X=ranG
2 simpll GGrpOpAXyXGGrpOp
3 simplr GGrpOpAXyXAX
4 simpr GGrpOpAXyXyX
5 1 grpoass GGrpOpAXyXAXAGyGA=AGyGA
6 2 3 4 3 5 syl13anc GGrpOpAXyXAGyGA=AGyGA
7 oveq2 yGA=UAGyGA=AGU
8 6 7 sylan9eq GGrpOpAXyXyGA=UAGyGA=AGU
9 oveq1 AGy=UAGyGA=UGA
10 8 9 sylan9req GGrpOpAXyXyGA=UAGy=UAGU=UGA
11 10 anasss GGrpOpAXyXyGA=UAGy=UAGU=UGA
12 11 r19.29an GGrpOpAXyXyGA=UAGy=UAGU=UGA