Metamath Proof Explorer


Theorem grpomuldivass

Description: Associative-type law for multiplication and division. (Contributed by NM, 15-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses grpdivf.1 X=ranG
grpdivf.3 D=/gG
Assertion grpomuldivass GGrpOpAXBXCXAGBDC=AGBDC

Proof

Step Hyp Ref Expression
1 grpdivf.1 X=ranG
2 grpdivf.3 D=/gG
3 simpr1 GGrpOpAXBXCXAX
4 simpr2 GGrpOpAXBXCXBX
5 eqid invG=invG
6 1 5 grpoinvcl GGrpOpCXinvGCX
7 6 3ad2antr3 GGrpOpAXBXCXinvGCX
8 3 4 7 3jca GGrpOpAXBXCXAXBXinvGCX
9 1 grpoass GGrpOpAXBXinvGCXAGBGinvGC=AGBGinvGC
10 8 9 syldan GGrpOpAXBXCXAGBGinvGC=AGBGinvGC
11 simpl GGrpOpAXBXCXGGrpOp
12 1 grpocl GGrpOpAXBXAGBX
13 12 3adant3r3 GGrpOpAXBXCXAGBX
14 simpr3 GGrpOpAXBXCXCX
15 1 5 2 grpodivval GGrpOpAGBXCXAGBDC=AGBGinvGC
16 11 13 14 15 syl3anc GGrpOpAXBXCXAGBDC=AGBGinvGC
17 1 5 2 grpodivval GGrpOpBXCXBDC=BGinvGC
18 17 3adant3r1 GGrpOpAXBXCXBDC=BGinvGC
19 18 oveq2d GGrpOpAXBXCXAGBDC=AGBGinvGC
20 10 16 19 3eqtr4d GGrpOpAXBXCXAGBDC=AGBDC