Metamath Proof Explorer


Theorem grporndm

Description: A group's range in terms of its domain. (Contributed by NM, 6-Apr-2008) (New usage is discouraged.)

Ref Expression
Assertion grporndm GGrpOpranG=domdomG

Proof

Step Hyp Ref Expression
1 eqid ranG=ranG
2 1 grpofo GGrpOpG:ranG×ranGontoranG
3 fof G:ranG×ranGontoranGG:ranG×ranGranG
4 3 fdmd G:ranG×ranGontoranGdomG=ranG×ranG
5 4 dmeqd G:ranG×ranGontoranGdomdomG=domranG×ranG
6 dmxpid domranG×ranG=ranG
7 5 6 eqtr2di G:ranG×ranGontoranGranG=domdomG
8 2 7 syl GGrpOpranG=domdomG