Metamath Proof Explorer


Theorem grpsubcld

Description: Closure of group subtraction. (Contributed by Thierry Arnoux, 3-Aug-2025)

Ref Expression
Hypotheses grpsubcld.b B = Base G
grpsubcld.m - ˙ = - G
grpsubcld.g φ G Grp
grpsubcld.x φ X B
grpsubcld.y φ Y B
Assertion grpsubcld φ X - ˙ Y B

Proof

Step Hyp Ref Expression
1 grpsubcld.b B = Base G
2 grpsubcld.m - ˙ = - G
3 grpsubcld.g φ G Grp
4 grpsubcld.x φ X B
5 grpsubcld.y φ Y B
6 1 2 grpsubcl G Grp X B Y B X - ˙ Y B
7 3 4 5 6 syl3anc φ X - ˙ Y B