Metamath Proof Explorer


Theorem grpsubfval

Description: Group subtraction (division) operation. For a shorter proof using ax-rep , see grpsubfvalALT . (Contributed by NM, 31-Mar-2014) (Revised by Stefan O'Rear, 27-Mar-2015) Remove dependency on ax-rep . (Revised by Rohan Ridenour, 17-Aug-2023) (Proof shortened by AV, 19-Feb-2024)

Ref Expression
Hypotheses grpsubval.b B=BaseG
grpsubval.p +˙=+G
grpsubval.i I=invgG
grpsubval.m -˙=-G
Assertion grpsubfval -˙=xB,yBx+˙Iy

Proof

Step Hyp Ref Expression
1 grpsubval.b B=BaseG
2 grpsubval.p +˙=+G
3 grpsubval.i I=invgG
4 grpsubval.m -˙=-G
5 fveq2 g=GBaseg=BaseG
6 5 1 eqtr4di g=GBaseg=B
7 fveq2 g=G+g=+G
8 7 2 eqtr4di g=G+g=+˙
9 eqidd g=Gx=x
10 fveq2 g=Ginvgg=invgG
11 10 3 eqtr4di g=Ginvgg=I
12 11 fveq1d g=Ginvggy=Iy
13 8 9 12 oveq123d g=Gx+ginvggy=x+˙Iy
14 6 6 13 mpoeq123dv g=GxBaseg,yBasegx+ginvggy=xB,yBx+˙Iy
15 df-sbg -𝑔=gVxBaseg,yBasegx+ginvggy
16 1 fvexi BV
17 2 fvexi +˙V
18 17 rnex ran+˙V
19 p0ex V
20 18 19 unex ran+˙V
21 df-ov x+˙Iy=+˙xIy
22 fvrn0 +˙xIyran+˙
23 21 22 eqeltri x+˙Iyran+˙
24 23 rgen2w xByBx+˙Iyran+˙
25 16 16 20 24 mpoexw xB,yBx+˙IyV
26 14 15 25 fvmpt GV-G=xB,yBx+˙Iy
27 4 26 eqtrid GV-˙=xB,yBx+˙Iy
28 fvprc ¬GV-G=
29 4 28 eqtrid ¬GV-˙=
30 fvprc ¬GVBaseG=
31 1 30 eqtrid ¬GVB=
32 31 olcd ¬GVB=B=
33 0mpo0 B=B=xB,yBx+˙Iy=
34 32 33 syl ¬GVxB,yBx+˙Iy=
35 29 34 eqtr4d ¬GV-˙=xB,yBx+˙Iy
36 27 35 pm2.61i -˙=xB,yBx+˙Iy