Metamath Proof Explorer


Theorem grpsubfvalALT

Description: Shorter proof of grpsubfval using ax-rep . (Contributed by NM, 31-Mar-2014) (Revised by Stefan O'Rear, 27-Mar-2015) (Proof shortened by AV, 19-Feb-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses grpsubval.b B=BaseG
grpsubval.p +˙=+G
grpsubval.i I=invgG
grpsubval.m -˙=-G
Assertion grpsubfvalALT -˙=xB,yBx+˙Iy

Proof

Step Hyp Ref Expression
1 grpsubval.b B=BaseG
2 grpsubval.p +˙=+G
3 grpsubval.i I=invgG
4 grpsubval.m -˙=-G
5 fveq2 g=GBaseg=BaseG
6 5 1 eqtr4di g=GBaseg=B
7 fveq2 g=G+g=+G
8 7 2 eqtr4di g=G+g=+˙
9 eqidd g=Gx=x
10 fveq2 g=Ginvgg=invgG
11 10 3 eqtr4di g=Ginvgg=I
12 11 fveq1d g=Ginvggy=Iy
13 8 9 12 oveq123d g=Gx+ginvggy=x+˙Iy
14 6 6 13 mpoeq123dv g=GxBaseg,yBasegx+ginvggy=xB,yBx+˙Iy
15 df-sbg -𝑔=gVxBaseg,yBasegx+ginvggy
16 1 fvexi BV
17 16 16 mpoex xB,yBx+˙IyV
18 14 15 17 fvmpt GV-G=xB,yBx+˙Iy
19 4 18 eqtrid GV-˙=xB,yBx+˙Iy
20 fvprc ¬GV-G=
21 4 20 eqtrid ¬GV-˙=
22 fvprc ¬GVBaseG=
23 1 22 eqtrid ¬GVB=
24 23 olcd ¬GVB=B=
25 0mpo0 B=B=xB,yBx+˙Iy=
26 24 25 syl ¬GVxB,yBx+˙Iy=
27 21 26 eqtr4d ¬GV-˙=xB,yBx+˙Iy
28 19 27 pm2.61i -˙=xB,yBx+˙Iy