| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpsubval.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | grpsubval.p |  |-  .+ = ( +g ` G ) | 
						
							| 3 |  | grpsubval.i |  |-  I = ( invg ` G ) | 
						
							| 4 |  | grpsubval.m |  |-  .- = ( -g ` G ) | 
						
							| 5 |  | fveq2 |  |-  ( g = G -> ( Base ` g ) = ( Base ` G ) ) | 
						
							| 6 | 5 1 | eqtr4di |  |-  ( g = G -> ( Base ` g ) = B ) | 
						
							| 7 |  | fveq2 |  |-  ( g = G -> ( +g ` g ) = ( +g ` G ) ) | 
						
							| 8 | 7 2 | eqtr4di |  |-  ( g = G -> ( +g ` g ) = .+ ) | 
						
							| 9 |  | eqidd |  |-  ( g = G -> x = x ) | 
						
							| 10 |  | fveq2 |  |-  ( g = G -> ( invg ` g ) = ( invg ` G ) ) | 
						
							| 11 | 10 3 | eqtr4di |  |-  ( g = G -> ( invg ` g ) = I ) | 
						
							| 12 | 11 | fveq1d |  |-  ( g = G -> ( ( invg ` g ) ` y ) = ( I ` y ) ) | 
						
							| 13 | 8 9 12 | oveq123d |  |-  ( g = G -> ( x ( +g ` g ) ( ( invg ` g ) ` y ) ) = ( x .+ ( I ` y ) ) ) | 
						
							| 14 | 6 6 13 | mpoeq123dv |  |-  ( g = G -> ( x e. ( Base ` g ) , y e. ( Base ` g ) |-> ( x ( +g ` g ) ( ( invg ` g ) ` y ) ) ) = ( x e. B , y e. B |-> ( x .+ ( I ` y ) ) ) ) | 
						
							| 15 |  | df-sbg |  |-  -g = ( g e. _V |-> ( x e. ( Base ` g ) , y e. ( Base ` g ) |-> ( x ( +g ` g ) ( ( invg ` g ) ` y ) ) ) ) | 
						
							| 16 | 1 | fvexi |  |-  B e. _V | 
						
							| 17 | 16 16 | mpoex |  |-  ( x e. B , y e. B |-> ( x .+ ( I ` y ) ) ) e. _V | 
						
							| 18 | 14 15 17 | fvmpt |  |-  ( G e. _V -> ( -g ` G ) = ( x e. B , y e. B |-> ( x .+ ( I ` y ) ) ) ) | 
						
							| 19 | 4 18 | eqtrid |  |-  ( G e. _V -> .- = ( x e. B , y e. B |-> ( x .+ ( I ` y ) ) ) ) | 
						
							| 20 |  | fvprc |  |-  ( -. G e. _V -> ( -g ` G ) = (/) ) | 
						
							| 21 | 4 20 | eqtrid |  |-  ( -. G e. _V -> .- = (/) ) | 
						
							| 22 |  | fvprc |  |-  ( -. G e. _V -> ( Base ` G ) = (/) ) | 
						
							| 23 | 1 22 | eqtrid |  |-  ( -. G e. _V -> B = (/) ) | 
						
							| 24 | 23 | olcd |  |-  ( -. G e. _V -> ( B = (/) \/ B = (/) ) ) | 
						
							| 25 |  | 0mpo0 |  |-  ( ( B = (/) \/ B = (/) ) -> ( x e. B , y e. B |-> ( x .+ ( I ` y ) ) ) = (/) ) | 
						
							| 26 | 24 25 | syl |  |-  ( -. G e. _V -> ( x e. B , y e. B |-> ( x .+ ( I ` y ) ) ) = (/) ) | 
						
							| 27 | 21 26 | eqtr4d |  |-  ( -. G e. _V -> .- = ( x e. B , y e. B |-> ( x .+ ( I ` y ) ) ) ) | 
						
							| 28 | 19 27 | pm2.61i |  |-  .- = ( x e. B , y e. B |-> ( x .+ ( I ` y ) ) ) |