Metamath Proof Explorer


Theorem grpsubinv

Description: Subtraction of an inverse. (Contributed by NM, 7-Apr-2015)

Ref Expression
Hypotheses grpsubinv.b B=BaseG
grpsubinv.p +˙=+G
grpsubinv.m -˙=-G
grpsubinv.n N=invgG
grpsubinv.g φGGrp
grpsubinv.x φXB
grpsubinv.y φYB
Assertion grpsubinv φX-˙NY=X+˙Y

Proof

Step Hyp Ref Expression
1 grpsubinv.b B=BaseG
2 grpsubinv.p +˙=+G
3 grpsubinv.m -˙=-G
4 grpsubinv.n N=invgG
5 grpsubinv.g φGGrp
6 grpsubinv.x φXB
7 grpsubinv.y φYB
8 1 4 grpinvcl GGrpYBNYB
9 5 7 8 syl2anc φNYB
10 1 2 4 3 grpsubval XBNYBX-˙NY=X+˙NNY
11 6 9 10 syl2anc φX-˙NY=X+˙NNY
12 1 4 grpinvinv GGrpYBNNY=Y
13 5 7 12 syl2anc φNNY=Y
14 13 oveq2d φX+˙NNY=X+˙Y
15 11 14 eqtrd φX-˙NY=X+˙Y