Metamath Proof Explorer


Theorem grpsubval

Description: Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014) (Revised by Mario Carneiro, 13-Dec-2014)

Ref Expression
Hypotheses grpsubval.b B=BaseG
grpsubval.p +˙=+G
grpsubval.i I=invgG
grpsubval.m -˙=-G
Assertion grpsubval XBYBX-˙Y=X+˙IY

Proof

Step Hyp Ref Expression
1 grpsubval.b B=BaseG
2 grpsubval.p +˙=+G
3 grpsubval.i I=invgG
4 grpsubval.m -˙=-G
5 oveq1 x=Xx+˙Iy=X+˙Iy
6 fveq2 y=YIy=IY
7 6 oveq2d y=YX+˙Iy=X+˙IY
8 1 2 3 4 grpsubfval -˙=xB,yBx+˙Iy
9 ovex X+˙IYV
10 5 7 8 9 ovmpo XBYBX-˙Y=X+˙IY