Metamath Proof Explorer


Theorem gsumcl

Description: Closure of a finite group sum. (Contributed by Mario Carneiro, 15-Dec-2014) (Revised by Mario Carneiro, 24-Apr-2016) (Revised by AV, 3-Jun-2019)

Ref Expression
Hypotheses gsumcl.b B=BaseG
gsumcl.z 0˙=0G
gsumcl.g φGCMnd
gsumcl.a φAV
gsumcl.f φF:AB
gsumcl.w φfinSupp0˙F
Assertion gsumcl φGFB

Proof

Step Hyp Ref Expression
1 gsumcl.b B=BaseG
2 gsumcl.z 0˙=0G
3 gsumcl.g φGCMnd
4 gsumcl.a φAV
5 gsumcl.f φF:AB
6 gsumcl.w φfinSupp0˙F
7 6 fsuppimpd φFsupp0˙Fin
8 1 2 3 4 5 7 gsumcl2 φGFB