Metamath Proof Explorer


Theorem gsumcl

Description: Closure of a finite group sum. (Contributed by Mario Carneiro, 15-Dec-2014) (Revised by Mario Carneiro, 24-Apr-2016) (Revised by AV, 3-Jun-2019)

Ref Expression
Hypotheses gsumcl.b B = Base G
gsumcl.z 0 ˙ = 0 G
gsumcl.g φ G CMnd
gsumcl.a φ A V
gsumcl.f φ F : A B
gsumcl.w φ finSupp 0 ˙ F
Assertion gsumcl φ G F B

Proof

Step Hyp Ref Expression
1 gsumcl.b B = Base G
2 gsumcl.z 0 ˙ = 0 G
3 gsumcl.g φ G CMnd
4 gsumcl.a φ A V
5 gsumcl.f φ F : A B
6 gsumcl.w φ finSupp 0 ˙ F
7 6 fsuppimpd φ F supp 0 ˙ Fin
8 1 2 3 4 5 7 gsumcl2 φ G F B