Database
BASIC ALGEBRAIC STRUCTURES
Groups
Abelian groups
Group sum operation
gsumcl
Metamath Proof Explorer
Description: Closure of a finite group sum. (Contributed by Mario Carneiro , 15-Dec-2014) (Revised by Mario Carneiro , 24-Apr-2016) (Revised by AV , 3-Jun-2019)
Ref
Expression
Hypotheses
gsumcl.b
⊢ B = Base G
gsumcl.z
⊢ 0 ˙ = 0 G
gsumcl.g
⊢ φ → G ∈ CMnd
gsumcl.a
⊢ φ → A ∈ V
gsumcl.f
⊢ φ → F : A ⟶ B
gsumcl.w
⊢ φ → finSupp 0 ˙ ⁡ F
Assertion
gsumcl
⊢ φ → ∑ G F ∈ B
Proof
Step
Hyp
Ref
Expression
1
gsumcl.b
⊢ B = Base G
2
gsumcl.z
⊢ 0 ˙ = 0 G
3
gsumcl.g
⊢ φ → G ∈ CMnd
4
gsumcl.a
⊢ φ → A ∈ V
5
gsumcl.f
⊢ φ → F : A ⟶ B
6
gsumcl.w
⊢ φ → finSupp 0 ˙ ⁡ F
7
6
fsuppimpd
⊢ φ → F supp 0 ˙ ∈ Fin
8
1 2 3 4 5 7
gsumcl2
⊢ φ → ∑ G F ∈ B