Metamath Proof Explorer


Theorem gsumconstf

Description: Sum of a constant series. (Contributed by Thierry Arnoux, 5-Jul-2017)

Ref Expression
Hypotheses gsumconstf.k _kX
gsumconstf.b B=BaseG
gsumconstf.m ·˙=G
Assertion gsumconstf GMndAFinXBGkAX=A·˙X

Proof

Step Hyp Ref Expression
1 gsumconstf.k _kX
2 gsumconstf.b B=BaseG
3 gsumconstf.m ·˙=G
4 nfcv _lX
5 eqidd k=lX=X
6 4 1 5 cbvmpt kAX=lAX
7 6 oveq2i GkAX=GlAX
8 2 3 gsumconst GMndAFinXBGlAX=A·˙X
9 7 8 eqtrid GMndAFinXBGkAX=A·˙X