Metamath Proof Explorer


Theorem gsumfsupp

Description: A group sum of a family can be restricted to the support of that family without changing its value, provided that that support is finite. This corresponds to the definition of an (infinite) product in Lang p. 5, last two formulas. (Contributed by AV, 27-Dec-2023)

Ref Expression
Hypotheses gsumfsupp.b B=BaseG
gsumfsupp.z 0˙=0G
gsumfsupp.s I=Fsupp0˙
gsumfsupp.g φGCMnd
gsumfsupp.a φAV
gsumfsupp.f φF:AB
gsumfsupp.w φfinSupp0˙F
Assertion gsumfsupp φGFI=GF

Proof

Step Hyp Ref Expression
1 gsumfsupp.b B=BaseG
2 gsumfsupp.z 0˙=0G
3 gsumfsupp.s I=Fsupp0˙
4 gsumfsupp.g φGCMnd
5 gsumfsupp.a φAV
6 gsumfsupp.f φF:AB
7 gsumfsupp.w φfinSupp0˙F
8 3 eqimss2i Fsupp0˙I
9 8 a1i φFsupp0˙I
10 1 2 4 5 6 9 7 gsumres φGFI=GF