Metamath Proof Explorer


Theorem gsummptfidmadd

Description: The sum of two group sums expressed as mappings with finite domain. (Contributed by AV, 23-Jul-2019)

Ref Expression
Hypotheses gsummptfidmadd.b B=BaseG
gsummptfidmadd.p +˙=+G
gsummptfidmadd.g φGCMnd
gsummptfidmadd.a φAFin
gsummptfidmadd.c φxACB
gsummptfidmadd.d φxADB
gsummptfidmadd.f F=xAC
gsummptfidmadd.h H=xAD
Assertion gsummptfidmadd φGxAC+˙D=GF+˙GH

Proof

Step Hyp Ref Expression
1 gsummptfidmadd.b B=BaseG
2 gsummptfidmadd.p +˙=+G
3 gsummptfidmadd.g φGCMnd
4 gsummptfidmadd.a φAFin
5 gsummptfidmadd.c φxACB
6 gsummptfidmadd.d φxADB
7 gsummptfidmadd.f F=xAC
8 gsummptfidmadd.h H=xAD
9 eqid 0G=0G
10 7 a1i φF=xAC
11 8 a1i φH=xAD
12 fvexd φ0GV
13 7 4 5 12 fsuppmptdm φfinSupp0GF
14 8 4 6 12 fsuppmptdm φfinSupp0GH
15 1 9 2 3 4 5 6 10 11 13 14 gsummptfsadd φGxAC+˙D=GF+˙GH