Metamath Proof Explorer
Description: Split a group sum expressed as mapping with a finite domain into two
parts. (Contributed by AV, 23-Jul-2019)
|
|
Ref |
Expression |
|
Hypotheses |
gsummptfidmsplit.b |
|
|
|
gsummptfidmsplit.p |
|
|
|
gsummptfidmsplit.g |
|
|
|
gsummptfidmsplit.a |
|
|
|
gsummptfidmsplit.y |
|
|
|
gsummptfidmsplit.i |
|
|
|
gsummptfidmsplit.u |
|
|
Assertion |
gsummptfidmsplit |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
gsummptfidmsplit.b |
|
2 |
|
gsummptfidmsplit.p |
|
3 |
|
gsummptfidmsplit.g |
|
4 |
|
gsummptfidmsplit.a |
|
5 |
|
gsummptfidmsplit.y |
|
6 |
|
gsummptfidmsplit.i |
|
7 |
|
gsummptfidmsplit.u |
|
8 |
|
eqid |
|
9 |
|
eqid |
|
10 |
|
fvexd |
|
11 |
9 4 5 10
|
fsuppmptdm |
|
12 |
1 8 2 3 4 5 11 6 7
|
gsumsplit2 |
|