Metamath Proof Explorer


Theorem gsummptfidmsplit

Description: Split a group sum expressed as mapping with a finite domain into two parts. (Contributed by AV, 23-Jul-2019)

Ref Expression
Hypotheses gsummptfidmsplit.b B=BaseG
gsummptfidmsplit.p +˙=+G
gsummptfidmsplit.g φGCMnd
gsummptfidmsplit.a φAFin
gsummptfidmsplit.y φkAYB
gsummptfidmsplit.i φCD=
gsummptfidmsplit.u φA=CD
Assertion gsummptfidmsplit φGkAY=GkCY+˙GkDY

Proof

Step Hyp Ref Expression
1 gsummptfidmsplit.b B=BaseG
2 gsummptfidmsplit.p +˙=+G
3 gsummptfidmsplit.g φGCMnd
4 gsummptfidmsplit.a φAFin
5 gsummptfidmsplit.y φkAYB
6 gsummptfidmsplit.i φCD=
7 gsummptfidmsplit.u φA=CD
8 eqid 0G=0G
9 eqid kAY=kAY
10 fvexd φ0GV
11 9 4 5 10 fsuppmptdm φfinSupp0GkAY
12 1 8 2 3 4 5 11 6 7 gsumsplit2 φGkAY=GkCY+˙GkDY