Metamath Proof Explorer


Theorem gsummptrev

Description: Revert ordering in a group sum. See also gsumwrev . (Contributed by Thierry Arnoux, 15-Feb-2026)

Ref Expression
Hypotheses gsummptrev.1 B = Base M
gsummptrev.2 φ M CMnd
gsummptrev.3 φ N 0
gsummptrev.4 φ k 0 N X B
gsummptrev.5 φ l 0 N k = N l X = Y
Assertion gsummptrev φ M k = 0 N X = M l = 0 N Y

Proof

Step Hyp Ref Expression
1 gsummptrev.1 B = Base M
2 gsummptrev.2 φ M CMnd
3 gsummptrev.3 φ N 0
4 gsummptrev.4 φ k 0 N X B
5 gsummptrev.5 φ l 0 N k = N l X = Y
6 nfcv _ k Y
7 eqid 0 M = 0 M
8 fzfid φ 0 N Fin
9 ssidd φ B B
10 fznn0sub2 l 0 N N l 0 N
11 10 adantl φ l 0 N N l 0 N
12 fznn0sub2 k 0 N N k 0 N
13 12 adantl φ k 0 N N k 0 N
14 elfznn0 k 0 N k 0
15 14 ad2antlr φ k 0 N l 0 N k 0
16 15 nn0cnd φ k 0 N l 0 N k
17 elfznn0 l 0 N l 0
18 17 adantl φ k 0 N l 0 N l 0
19 18 nn0cnd φ k 0 N l 0 N l
20 3 ad2antrr φ k 0 N l 0 N N 0
21 20 nn0cnd φ k 0 N l 0 N N
22 16 19 21 subexsub φ k 0 N l 0 N k = N l l = N k
23 13 22 reu6dv φ k 0 N ∃! l 0 N k = N l
24 6 1 7 5 2 8 9 4 11 23 gsummptf1od φ M k = 0 N X = M l = 0 N Y