| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsummptrev.1 |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 2 |
|
gsummptrev.2 |
⊢ ( 𝜑 → 𝑀 ∈ CMnd ) |
| 3 |
|
gsummptrev.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 4 |
|
gsummptrev.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑋 ∈ 𝐵 ) |
| 5 |
|
gsummptrev.5 |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 = ( 𝑁 − 𝑙 ) ) → 𝑋 = 𝑌 ) |
| 6 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑌 |
| 7 |
|
eqid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) |
| 8 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... 𝑁 ) ∈ Fin ) |
| 9 |
|
ssidd |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐵 ) |
| 10 |
|
fznn0sub2 |
⊢ ( 𝑙 ∈ ( 0 ... 𝑁 ) → ( 𝑁 − 𝑙 ) ∈ ( 0 ... 𝑁 ) ) |
| 11 |
10
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( 0 ... 𝑁 ) ) → ( 𝑁 − 𝑙 ) ∈ ( 0 ... 𝑁 ) ) |
| 12 |
|
fznn0sub2 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → ( 𝑁 − 𝑘 ) ∈ ( 0 ... 𝑁 ) ) |
| 13 |
12
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑁 − 𝑘 ) ∈ ( 0 ... 𝑁 ) ) |
| 14 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ℕ0 ) |
| 15 |
14
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑙 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℕ0 ) |
| 16 |
15
|
nn0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑙 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℂ ) |
| 17 |
|
elfznn0 |
⊢ ( 𝑙 ∈ ( 0 ... 𝑁 ) → 𝑙 ∈ ℕ0 ) |
| 18 |
17
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑙 ∈ ( 0 ... 𝑁 ) ) → 𝑙 ∈ ℕ0 ) |
| 19 |
18
|
nn0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑙 ∈ ( 0 ... 𝑁 ) ) → 𝑙 ∈ ℂ ) |
| 20 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑙 ∈ ( 0 ... 𝑁 ) ) → 𝑁 ∈ ℕ0 ) |
| 21 |
20
|
nn0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑙 ∈ ( 0 ... 𝑁 ) ) → 𝑁 ∈ ℂ ) |
| 22 |
16 19 21
|
subexsub |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑙 ∈ ( 0 ... 𝑁 ) ) → ( 𝑘 = ( 𝑁 − 𝑙 ) ↔ 𝑙 = ( 𝑁 − 𝑘 ) ) ) |
| 23 |
13 22
|
reu6dv |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ∃! 𝑙 ∈ ( 0 ... 𝑁 ) 𝑘 = ( 𝑁 − 𝑙 ) ) |
| 24 |
6 1 7 5 2 8 9 4 11 23
|
gsummptf1od |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ 𝑋 ) ) = ( 𝑀 Σg ( 𝑙 ∈ ( 0 ... 𝑁 ) ↦ 𝑌 ) ) ) |