| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsummptp1.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
gsummptp1.2 |
⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
| 3 |
|
gsummptp1.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 4 |
|
gsummptp1.4 |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( 1 ... 𝑁 ) ) → 𝑌 ∈ 𝐵 ) |
| 5 |
|
gsummptp1.5 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑙 = ( 𝑘 + 1 ) ) → 𝑌 = 𝑋 ) |
| 6 |
|
nfcsb1v |
⊢ Ⅎ 𝑙 ⦋ ( 𝑘 + 1 ) / 𝑙 ⦌ 𝑌 |
| 7 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 8 |
|
csbeq1a |
⊢ ( 𝑙 = ( 𝑘 + 1 ) → 𝑌 = ⦋ ( 𝑘 + 1 ) / 𝑙 ⦌ 𝑌 ) |
| 9 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) ∈ Fin ) |
| 10 |
|
ssidd |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐵 ) |
| 11 |
|
fz0add1fz1 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑘 + 1 ) ∈ ( 1 ... 𝑁 ) ) |
| 12 |
3 11
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑘 + 1 ) ∈ ( 1 ... 𝑁 ) ) |
| 13 |
|
fz1fzo0m1 |
⊢ ( 𝑙 ∈ ( 1 ... 𝑁 ) → ( 𝑙 − 1 ) ∈ ( 0 ..^ 𝑁 ) ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( 1 ... 𝑁 ) ) → ( 𝑙 − 1 ) ∈ ( 0 ..^ 𝑁 ) ) |
| 15 |
|
eqcom |
⊢ ( ( 𝑘 + 1 ) = 𝑙 ↔ 𝑙 = ( 𝑘 + 1 ) ) |
| 16 |
|
elfzonn0 |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) → 𝑘 ∈ ℕ0 ) |
| 17 |
16
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → 𝑘 ∈ ℕ0 ) |
| 18 |
17
|
nn0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → 𝑘 ∈ ℂ ) |
| 19 |
|
1cnd |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → 1 ∈ ℂ ) |
| 20 |
|
elfznn |
⊢ ( 𝑙 ∈ ( 1 ... 𝑁 ) → 𝑙 ∈ ℕ ) |
| 21 |
20
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → 𝑙 ∈ ℕ ) |
| 22 |
21
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → 𝑙 ∈ ℂ ) |
| 23 |
18 19 22
|
addlsub |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑘 + 1 ) = 𝑙 ↔ 𝑘 = ( 𝑙 − 1 ) ) ) |
| 24 |
15 23
|
bitr3id |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑙 = ( 𝑘 + 1 ) ↔ 𝑘 = ( 𝑙 − 1 ) ) ) |
| 25 |
14 24
|
reu6dv |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( 1 ... 𝑁 ) ) → ∃! 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑙 = ( 𝑘 + 1 ) ) |
| 26 |
6 1 7 8 2 9 10 4 12 25
|
gsummptf1o |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑙 ∈ ( 1 ... 𝑁 ) ↦ 𝑌 ) ) = ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ⦋ ( 𝑘 + 1 ) / 𝑙 ⦌ 𝑌 ) ) ) |
| 27 |
12 5
|
csbied |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ⦋ ( 𝑘 + 1 ) / 𝑙 ⦌ 𝑌 = 𝑋 ) |
| 28 |
27
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ⦋ ( 𝑘 + 1 ) / 𝑙 ⦌ 𝑌 ) = ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ 𝑋 ) ) |
| 29 |
28
|
oveq2d |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ⦋ ( 𝑘 + 1 ) / 𝑙 ⦌ 𝑌 ) ) = ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ 𝑋 ) ) ) |
| 30 |
26 29
|
eqtr2d |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ 𝑋 ) ) = ( 𝑅 Σg ( 𝑙 ∈ ( 1 ... 𝑁 ) ↦ 𝑌 ) ) ) |