| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsummptp1.1 |
|- B = ( Base ` R ) |
| 2 |
|
gsummptp1.2 |
|- ( ph -> R e. CMnd ) |
| 3 |
|
gsummptp1.3 |
|- ( ph -> N e. NN0 ) |
| 4 |
|
gsummptp1.4 |
|- ( ( ph /\ l e. ( 1 ... N ) ) -> Y e. B ) |
| 5 |
|
gsummptp1.5 |
|- ( ( ( ph /\ k e. ( 0 ..^ N ) ) /\ l = ( k + 1 ) ) -> Y = X ) |
| 6 |
|
nfcsb1v |
|- F/_ l [_ ( k + 1 ) / l ]_ Y |
| 7 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 8 |
|
csbeq1a |
|- ( l = ( k + 1 ) -> Y = [_ ( k + 1 ) / l ]_ Y ) |
| 9 |
|
fzfid |
|- ( ph -> ( 1 ... N ) e. Fin ) |
| 10 |
|
ssidd |
|- ( ph -> B C_ B ) |
| 11 |
|
fz0add1fz1 |
|- ( ( N e. NN0 /\ k e. ( 0 ..^ N ) ) -> ( k + 1 ) e. ( 1 ... N ) ) |
| 12 |
3 11
|
sylan |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( k + 1 ) e. ( 1 ... N ) ) |
| 13 |
|
fz1fzo0m1 |
|- ( l e. ( 1 ... N ) -> ( l - 1 ) e. ( 0 ..^ N ) ) |
| 14 |
13
|
adantl |
|- ( ( ph /\ l e. ( 1 ... N ) ) -> ( l - 1 ) e. ( 0 ..^ N ) ) |
| 15 |
|
eqcom |
|- ( ( k + 1 ) = l <-> l = ( k + 1 ) ) |
| 16 |
|
elfzonn0 |
|- ( k e. ( 0 ..^ N ) -> k e. NN0 ) |
| 17 |
16
|
adantl |
|- ( ( ( ph /\ l e. ( 1 ... N ) ) /\ k e. ( 0 ..^ N ) ) -> k e. NN0 ) |
| 18 |
17
|
nn0cnd |
|- ( ( ( ph /\ l e. ( 1 ... N ) ) /\ k e. ( 0 ..^ N ) ) -> k e. CC ) |
| 19 |
|
1cnd |
|- ( ( ( ph /\ l e. ( 1 ... N ) ) /\ k e. ( 0 ..^ N ) ) -> 1 e. CC ) |
| 20 |
|
elfznn |
|- ( l e. ( 1 ... N ) -> l e. NN ) |
| 21 |
20
|
ad2antlr |
|- ( ( ( ph /\ l e. ( 1 ... N ) ) /\ k e. ( 0 ..^ N ) ) -> l e. NN ) |
| 22 |
21
|
nncnd |
|- ( ( ( ph /\ l e. ( 1 ... N ) ) /\ k e. ( 0 ..^ N ) ) -> l e. CC ) |
| 23 |
18 19 22
|
addlsub |
|- ( ( ( ph /\ l e. ( 1 ... N ) ) /\ k e. ( 0 ..^ N ) ) -> ( ( k + 1 ) = l <-> k = ( l - 1 ) ) ) |
| 24 |
15 23
|
bitr3id |
|- ( ( ( ph /\ l e. ( 1 ... N ) ) /\ k e. ( 0 ..^ N ) ) -> ( l = ( k + 1 ) <-> k = ( l - 1 ) ) ) |
| 25 |
14 24
|
reu6dv |
|- ( ( ph /\ l e. ( 1 ... N ) ) -> E! k e. ( 0 ..^ N ) l = ( k + 1 ) ) |
| 26 |
6 1 7 8 2 9 10 4 12 25
|
gsummptf1o |
|- ( ph -> ( R gsum ( l e. ( 1 ... N ) |-> Y ) ) = ( R gsum ( k e. ( 0 ..^ N ) |-> [_ ( k + 1 ) / l ]_ Y ) ) ) |
| 27 |
12 5
|
csbied |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> [_ ( k + 1 ) / l ]_ Y = X ) |
| 28 |
27
|
mpteq2dva |
|- ( ph -> ( k e. ( 0 ..^ N ) |-> [_ ( k + 1 ) / l ]_ Y ) = ( k e. ( 0 ..^ N ) |-> X ) ) |
| 29 |
28
|
oveq2d |
|- ( ph -> ( R gsum ( k e. ( 0 ..^ N ) |-> [_ ( k + 1 ) / l ]_ Y ) ) = ( R gsum ( k e. ( 0 ..^ N ) |-> X ) ) ) |
| 30 |
26 29
|
eqtr2d |
|- ( ph -> ( R gsum ( k e. ( 0 ..^ N ) |-> X ) ) = ( R gsum ( l e. ( 1 ... N ) |-> Y ) ) ) |