Metamath Proof Explorer


Theorem gsummptp1

Description: Reindex a zero-based sum as a one-base sum. (Contributed by Thierry Arnoux, 15-Feb-2026)

Ref Expression
Hypotheses gsummptp1.1 B = Base R
gsummptp1.2 φ R CMnd
gsummptp1.3 φ N 0
gsummptp1.4 φ l 1 N Y B
gsummptp1.5 φ k 0 ..^ N l = k + 1 Y = X
Assertion gsummptp1 φ R k 0 ..^ N X = R l = 1 N Y

Proof

Step Hyp Ref Expression
1 gsummptp1.1 B = Base R
2 gsummptp1.2 φ R CMnd
3 gsummptp1.3 φ N 0
4 gsummptp1.4 φ l 1 N Y B
5 gsummptp1.5 φ k 0 ..^ N l = k + 1 Y = X
6 nfcsb1v _ l k + 1 / l Y
7 eqid 0 R = 0 R
8 csbeq1a l = k + 1 Y = k + 1 / l Y
9 fzfid φ 1 N Fin
10 ssidd φ B B
11 fz0add1fz1 N 0 k 0 ..^ N k + 1 1 N
12 3 11 sylan φ k 0 ..^ N k + 1 1 N
13 fz1fzo0m1 l 1 N l 1 0 ..^ N
14 13 adantl φ l 1 N l 1 0 ..^ N
15 eqcom k + 1 = l l = k + 1
16 elfzonn0 k 0 ..^ N k 0
17 16 adantl φ l 1 N k 0 ..^ N k 0
18 17 nn0cnd φ l 1 N k 0 ..^ N k
19 1cnd φ l 1 N k 0 ..^ N 1
20 elfznn l 1 N l
21 20 ad2antlr φ l 1 N k 0 ..^ N l
22 21 nncnd φ l 1 N k 0 ..^ N l
23 18 19 22 addlsub φ l 1 N k 0 ..^ N k + 1 = l k = l 1
24 15 23 bitr3id φ l 1 N k 0 ..^ N l = k + 1 k = l 1
25 14 24 reu6dv φ l 1 N ∃! k 0 ..^ N l = k + 1
26 6 1 7 8 2 9 10 4 12 25 gsummptf1o φ R l = 1 N Y = R k 0 ..^ N k + 1 / l Y
27 12 5 csbied φ k 0 ..^ N k + 1 / l Y = X
28 27 mpteq2dva φ k 0 ..^ N k + 1 / l Y = k 0 ..^ N X
29 28 oveq2d φ R k 0 ..^ N k + 1 / l Y = R k 0 ..^ N X
30 26 29 eqtr2d φ R k 0 ..^ N X = R l = 1 N Y