Metamath Proof Explorer


Theorem gsummptfzsplitra

Description: Split a group sum expressed as mapping with a finite set of sequential integers as domain into two parts, extracting a singleton from the right. (Contributed by Thierry Arnoux, 15-Feb-2026)

Ref Expression
Hypotheses gsummptfzsplita.b B = Base G
gsummptfzsplita.p + ˙ = + G
gsummptfzsplita.g φ G CMnd
gsummptfzsplita.n φ N M
gsummptfzsplita.y φ k M N Y B
gsummptfzsplitra.1 φ k = N Y = X
Assertion gsummptfzsplitra φ G k = M N Y = G k M ..^ N Y + ˙ X

Proof

Step Hyp Ref Expression
1 gsummptfzsplita.b B = Base G
2 gsummptfzsplita.p + ˙ = + G
3 gsummptfzsplita.g φ G CMnd
4 gsummptfzsplita.n φ N M
5 gsummptfzsplita.y φ k M N Y B
6 gsummptfzsplitra.1 φ k = N Y = X
7 fzfid φ M N Fin
8 fzodisjsn M ..^ N N =
9 8 a1i φ M ..^ N N =
10 fzisfzounsn N M M N = M ..^ N N
11 4 10 syl φ M N = M ..^ N N
12 1 2 3 7 5 9 11 gsummptfidmsplit φ G k = M N Y = G k M ..^ N Y + ˙ G k N Y
13 3 cmnmndd φ G Mnd
14 4 6 csbied φ N / k Y = X
15 eluzfz2 N M N M N
16 4 15 syl φ N M N
17 5 ralrimiva φ k M N Y B
18 rspcsbela N M N k M N Y B N / k Y B
19 16 17 18 syl2anc φ N / k Y B
20 14 19 eqeltrrd φ X B
21 1 13 4 20 6 gsumsnd φ G k N Y = X
22 21 oveq2d φ G k M ..^ N Y + ˙ G k N Y = G k M ..^ N Y + ˙ X
23 12 22 eqtrd φ G k = M N Y = G k M ..^ N Y + ˙ X