Metamath Proof Explorer


Theorem gsummptfzsplitra

Description: Split a group sum expressed as mapping with a finite set of sequential integers as domain into two parts, extracting a singleton from the right. (Contributed by Thierry Arnoux, 15-Feb-2026)

Ref Expression
Hypotheses gsummptfzsplita.b 𝐵 = ( Base ‘ 𝐺 )
gsummptfzsplita.p + = ( +g𝐺 )
gsummptfzsplita.g ( 𝜑𝐺 ∈ CMnd )
gsummptfzsplita.n ( 𝜑𝑁 ∈ ( ℤ𝑀 ) )
gsummptfzsplita.y ( ( 𝜑𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑌𝐵 )
gsummptfzsplitra.1 ( ( 𝜑𝑘 = 𝑁 ) → 𝑌 = 𝑋 )
Assertion gsummptfzsplitra ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ 𝑌 ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ↦ 𝑌 ) ) + 𝑋 ) )

Proof

Step Hyp Ref Expression
1 gsummptfzsplita.b 𝐵 = ( Base ‘ 𝐺 )
2 gsummptfzsplita.p + = ( +g𝐺 )
3 gsummptfzsplita.g ( 𝜑𝐺 ∈ CMnd )
4 gsummptfzsplita.n ( 𝜑𝑁 ∈ ( ℤ𝑀 ) )
5 gsummptfzsplita.y ( ( 𝜑𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑌𝐵 )
6 gsummptfzsplitra.1 ( ( 𝜑𝑘 = 𝑁 ) → 𝑌 = 𝑋 )
7 fzfid ( 𝜑 → ( 𝑀 ... 𝑁 ) ∈ Fin )
8 fzodisjsn ( ( 𝑀 ..^ 𝑁 ) ∩ { 𝑁 } ) = ∅
9 8 a1i ( 𝜑 → ( ( 𝑀 ..^ 𝑁 ) ∩ { 𝑁 } ) = ∅ )
10 fzisfzounsn ( 𝑁 ∈ ( ℤ𝑀 ) → ( 𝑀 ... 𝑁 ) = ( ( 𝑀 ..^ 𝑁 ) ∪ { 𝑁 } ) )
11 4 10 syl ( 𝜑 → ( 𝑀 ... 𝑁 ) = ( ( 𝑀 ..^ 𝑁 ) ∪ { 𝑁 } ) )
12 1 2 3 7 5 9 11 gsummptfidmsplit ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ 𝑌 ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ↦ 𝑌 ) ) + ( 𝐺 Σg ( 𝑘 ∈ { 𝑁 } ↦ 𝑌 ) ) ) )
13 3 cmnmndd ( 𝜑𝐺 ∈ Mnd )
14 4 6 csbied ( 𝜑 𝑁 / 𝑘 𝑌 = 𝑋 )
15 eluzfz2 ( 𝑁 ∈ ( ℤ𝑀 ) → 𝑁 ∈ ( 𝑀 ... 𝑁 ) )
16 4 15 syl ( 𝜑𝑁 ∈ ( 𝑀 ... 𝑁 ) )
17 5 ralrimiva ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝑌𝐵 )
18 rspcsbela ( ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) ∧ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝑌𝐵 ) → 𝑁 / 𝑘 𝑌𝐵 )
19 16 17 18 syl2anc ( 𝜑 𝑁 / 𝑘 𝑌𝐵 )
20 14 19 eqeltrrd ( 𝜑𝑋𝐵 )
21 1 13 4 20 6 gsumsnd ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ { 𝑁 } ↦ 𝑌 ) ) = 𝑋 )
22 21 oveq2d ( 𝜑 → ( ( 𝐺 Σg ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ↦ 𝑌 ) ) + ( 𝐺 Σg ( 𝑘 ∈ { 𝑁 } ↦ 𝑌 ) ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ↦ 𝑌 ) ) + 𝑋 ) )
23 12 22 eqtrd ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ 𝑌 ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ↦ 𝑌 ) ) + 𝑋 ) )