| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsummptfzsplita.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
gsummptfzsplita.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 3 |
|
gsummptfzsplita.g |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
| 4 |
|
gsummptfzsplita.n |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 5 |
|
gsummptfzsplita.y |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑌 ∈ 𝐵 ) |
| 6 |
|
gsummptfzsplitra.1 |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝑁 ) → 𝑌 = 𝑋 ) |
| 7 |
|
fzfid |
⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) ∈ Fin ) |
| 8 |
|
fzodisjsn |
⊢ ( ( 𝑀 ..^ 𝑁 ) ∩ { 𝑁 } ) = ∅ |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → ( ( 𝑀 ..^ 𝑁 ) ∩ { 𝑁 } ) = ∅ ) |
| 10 |
|
fzisfzounsn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... 𝑁 ) = ( ( 𝑀 ..^ 𝑁 ) ∪ { 𝑁 } ) ) |
| 11 |
4 10
|
syl |
⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) = ( ( 𝑀 ..^ 𝑁 ) ∪ { 𝑁 } ) ) |
| 12 |
1 2 3 7 5 9 11
|
gsummptfidmsplit |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ 𝑌 ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ↦ 𝑌 ) ) + ( 𝐺 Σg ( 𝑘 ∈ { 𝑁 } ↦ 𝑌 ) ) ) ) |
| 13 |
3
|
cmnmndd |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 14 |
4 6
|
csbied |
⊢ ( 𝜑 → ⦋ 𝑁 / 𝑘 ⦌ 𝑌 = 𝑋 ) |
| 15 |
|
eluzfz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
| 16 |
4 15
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
| 17 |
5
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝑌 ∈ 𝐵 ) |
| 18 |
|
rspcsbela |
⊢ ( ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) ∧ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝑌 ∈ 𝐵 ) → ⦋ 𝑁 / 𝑘 ⦌ 𝑌 ∈ 𝐵 ) |
| 19 |
16 17 18
|
syl2anc |
⊢ ( 𝜑 → ⦋ 𝑁 / 𝑘 ⦌ 𝑌 ∈ 𝐵 ) |
| 20 |
14 19
|
eqeltrrd |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 21 |
1 13 4 20 6
|
gsumsnd |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ { 𝑁 } ↦ 𝑌 ) ) = 𝑋 ) |
| 22 |
21
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐺 Σg ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ↦ 𝑌 ) ) + ( 𝐺 Σg ( 𝑘 ∈ { 𝑁 } ↦ 𝑌 ) ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ↦ 𝑌 ) ) + 𝑋 ) ) |
| 23 |
12 22
|
eqtrd |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ 𝑌 ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ↦ 𝑌 ) ) + 𝑋 ) ) |