| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsummptfzsplita.b |
|- B = ( Base ` G ) |
| 2 |
|
gsummptfzsplita.p |
|- .+ = ( +g ` G ) |
| 3 |
|
gsummptfzsplita.g |
|- ( ph -> G e. CMnd ) |
| 4 |
|
gsummptfzsplita.n |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
| 5 |
|
gsummptfzsplita.y |
|- ( ( ph /\ k e. ( M ... N ) ) -> Y e. B ) |
| 6 |
|
gsummptfzsplitra.1 |
|- ( ( ph /\ k = N ) -> Y = X ) |
| 7 |
|
fzfid |
|- ( ph -> ( M ... N ) e. Fin ) |
| 8 |
|
fzodisjsn |
|- ( ( M ..^ N ) i^i { N } ) = (/) |
| 9 |
8
|
a1i |
|- ( ph -> ( ( M ..^ N ) i^i { N } ) = (/) ) |
| 10 |
|
fzisfzounsn |
|- ( N e. ( ZZ>= ` M ) -> ( M ... N ) = ( ( M ..^ N ) u. { N } ) ) |
| 11 |
4 10
|
syl |
|- ( ph -> ( M ... N ) = ( ( M ..^ N ) u. { N } ) ) |
| 12 |
1 2 3 7 5 9 11
|
gsummptfidmsplit |
|- ( ph -> ( G gsum ( k e. ( M ... N ) |-> Y ) ) = ( ( G gsum ( k e. ( M ..^ N ) |-> Y ) ) .+ ( G gsum ( k e. { N } |-> Y ) ) ) ) |
| 13 |
3
|
cmnmndd |
|- ( ph -> G e. Mnd ) |
| 14 |
4 6
|
csbied |
|- ( ph -> [_ N / k ]_ Y = X ) |
| 15 |
|
eluzfz2 |
|- ( N e. ( ZZ>= ` M ) -> N e. ( M ... N ) ) |
| 16 |
4 15
|
syl |
|- ( ph -> N e. ( M ... N ) ) |
| 17 |
5
|
ralrimiva |
|- ( ph -> A. k e. ( M ... N ) Y e. B ) |
| 18 |
|
rspcsbela |
|- ( ( N e. ( M ... N ) /\ A. k e. ( M ... N ) Y e. B ) -> [_ N / k ]_ Y e. B ) |
| 19 |
16 17 18
|
syl2anc |
|- ( ph -> [_ N / k ]_ Y e. B ) |
| 20 |
14 19
|
eqeltrrd |
|- ( ph -> X e. B ) |
| 21 |
1 13 4 20 6
|
gsumsnd |
|- ( ph -> ( G gsum ( k e. { N } |-> Y ) ) = X ) |
| 22 |
21
|
oveq2d |
|- ( ph -> ( ( G gsum ( k e. ( M ..^ N ) |-> Y ) ) .+ ( G gsum ( k e. { N } |-> Y ) ) ) = ( ( G gsum ( k e. ( M ..^ N ) |-> Y ) ) .+ X ) ) |
| 23 |
12 22
|
eqtrd |
|- ( ph -> ( G gsum ( k e. ( M ... N ) |-> Y ) ) = ( ( G gsum ( k e. ( M ..^ N ) |-> Y ) ) .+ X ) ) |