| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsummptfzsplita.b |
|- B = ( Base ` G ) |
| 2 |
|
gsummptfzsplita.p |
|- .+ = ( +g ` G ) |
| 3 |
|
gsummptfzsplita.g |
|- ( ph -> G e. CMnd ) |
| 4 |
|
gsummptfzsplita.n |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
| 5 |
|
gsummptfzsplita.y |
|- ( ( ph /\ k e. ( M ... N ) ) -> Y e. B ) |
| 6 |
|
gsummptfzsplitla.1 |
|- ( ( ph /\ k = M ) -> Y = X ) |
| 7 |
|
fzfid |
|- ( ph -> ( M ... N ) e. Fin ) |
| 8 |
|
fzpreddisj |
|- ( N e. ( ZZ>= ` M ) -> ( { M } i^i ( ( M + 1 ) ... N ) ) = (/) ) |
| 9 |
4 8
|
syl |
|- ( ph -> ( { M } i^i ( ( M + 1 ) ... N ) ) = (/) ) |
| 10 |
|
fzpred |
|- ( N e. ( ZZ>= ` M ) -> ( M ... N ) = ( { M } u. ( ( M + 1 ) ... N ) ) ) |
| 11 |
4 10
|
syl |
|- ( ph -> ( M ... N ) = ( { M } u. ( ( M + 1 ) ... N ) ) ) |
| 12 |
1 2 3 7 5 9 11
|
gsummptfidmsplit |
|- ( ph -> ( G gsum ( k e. ( M ... N ) |-> Y ) ) = ( ( G gsum ( k e. { M } |-> Y ) ) .+ ( G gsum ( k e. ( ( M + 1 ) ... N ) |-> Y ) ) ) ) |
| 13 |
3
|
cmnmndd |
|- ( ph -> G e. Mnd ) |
| 14 |
4
|
elfvexd |
|- ( ph -> M e. _V ) |
| 15 |
14 6
|
csbied |
|- ( ph -> [_ M / k ]_ Y = X ) |
| 16 |
|
eluzfz1 |
|- ( N e. ( ZZ>= ` M ) -> M e. ( M ... N ) ) |
| 17 |
4 16
|
syl |
|- ( ph -> M e. ( M ... N ) ) |
| 18 |
5
|
ralrimiva |
|- ( ph -> A. k e. ( M ... N ) Y e. B ) |
| 19 |
|
rspcsbela |
|- ( ( M e. ( M ... N ) /\ A. k e. ( M ... N ) Y e. B ) -> [_ M / k ]_ Y e. B ) |
| 20 |
17 18 19
|
syl2anc |
|- ( ph -> [_ M / k ]_ Y e. B ) |
| 21 |
15 20
|
eqeltrrd |
|- ( ph -> X e. B ) |
| 22 |
1 13 14 21 6
|
gsumsnd |
|- ( ph -> ( G gsum ( k e. { M } |-> Y ) ) = X ) |
| 23 |
22
|
oveq1d |
|- ( ph -> ( ( G gsum ( k e. { M } |-> Y ) ) .+ ( G gsum ( k e. ( ( M + 1 ) ... N ) |-> Y ) ) ) = ( X .+ ( G gsum ( k e. ( ( M + 1 ) ... N ) |-> Y ) ) ) ) |
| 24 |
12 23
|
eqtrd |
|- ( ph -> ( G gsum ( k e. ( M ... N ) |-> Y ) ) = ( X .+ ( G gsum ( k e. ( ( M + 1 ) ... N ) |-> Y ) ) ) ) |