Metamath Proof Explorer


Theorem gsummptfzsplitla

Description: Split a group sum expressed as mapping with a finite set of sequential integers as domain into two parts, extracting a singleton from the left. (Contributed by Thierry Arnoux, 15-Feb-2026)

Ref Expression
Hypotheses gsummptfzsplita.b B = Base G
gsummptfzsplita.p + ˙ = + G
gsummptfzsplita.g φ G CMnd
gsummptfzsplita.n φ N M
gsummptfzsplita.y φ k M N Y B
gsummptfzsplitla.1 φ k = M Y = X
Assertion gsummptfzsplitla φ G k = M N Y = X + ˙ G k = M + 1 N Y

Proof

Step Hyp Ref Expression
1 gsummptfzsplita.b B = Base G
2 gsummptfzsplita.p + ˙ = + G
3 gsummptfzsplita.g φ G CMnd
4 gsummptfzsplita.n φ N M
5 gsummptfzsplita.y φ k M N Y B
6 gsummptfzsplitla.1 φ k = M Y = X
7 fzfid φ M N Fin
8 fzpreddisj N M M M + 1 N =
9 4 8 syl φ M M + 1 N =
10 fzpred N M M N = M M + 1 N
11 4 10 syl φ M N = M M + 1 N
12 1 2 3 7 5 9 11 gsummptfidmsplit φ G k = M N Y = G k M Y + ˙ G k = M + 1 N Y
13 3 cmnmndd φ G Mnd
14 4 elfvexd φ M V
15 14 6 csbied φ M / k Y = X
16 eluzfz1 N M M M N
17 4 16 syl φ M M N
18 5 ralrimiva φ k M N Y B
19 rspcsbela M M N k M N Y B M / k Y B
20 17 18 19 syl2anc φ M / k Y B
21 15 20 eqeltrrd φ X B
22 1 13 14 21 6 gsumsnd φ G k M Y = X
23 22 oveq1d φ G k M Y + ˙ G k = M + 1 N Y = X + ˙ G k = M + 1 N Y
24 12 23 eqtrd φ G k = M N Y = X + ˙ G k = M + 1 N Y