Metamath Proof Explorer


Theorem gsummptfzsplitla

Description: Split a group sum expressed as mapping with a finite set of sequential integers as domain into two parts, extracting a singleton from the left. (Contributed by Thierry Arnoux, 15-Feb-2026)

Ref Expression
Hypotheses gsummptfzsplita.b 𝐵 = ( Base ‘ 𝐺 )
gsummptfzsplita.p + = ( +g𝐺 )
gsummptfzsplita.g ( 𝜑𝐺 ∈ CMnd )
gsummptfzsplita.n ( 𝜑𝑁 ∈ ( ℤ𝑀 ) )
gsummptfzsplita.y ( ( 𝜑𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑌𝐵 )
gsummptfzsplitla.1 ( ( 𝜑𝑘 = 𝑀 ) → 𝑌 = 𝑋 )
Assertion gsummptfzsplitla ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ 𝑌 ) ) = ( 𝑋 + ( 𝐺 Σg ( 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ↦ 𝑌 ) ) ) )

Proof

Step Hyp Ref Expression
1 gsummptfzsplita.b 𝐵 = ( Base ‘ 𝐺 )
2 gsummptfzsplita.p + = ( +g𝐺 )
3 gsummptfzsplita.g ( 𝜑𝐺 ∈ CMnd )
4 gsummptfzsplita.n ( 𝜑𝑁 ∈ ( ℤ𝑀 ) )
5 gsummptfzsplita.y ( ( 𝜑𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑌𝐵 )
6 gsummptfzsplitla.1 ( ( 𝜑𝑘 = 𝑀 ) → 𝑌 = 𝑋 )
7 fzfid ( 𝜑 → ( 𝑀 ... 𝑁 ) ∈ Fin )
8 fzpreddisj ( 𝑁 ∈ ( ℤ𝑀 ) → ( { 𝑀 } ∩ ( ( 𝑀 + 1 ) ... 𝑁 ) ) = ∅ )
9 4 8 syl ( 𝜑 → ( { 𝑀 } ∩ ( ( 𝑀 + 1 ) ... 𝑁 ) ) = ∅ )
10 fzpred ( 𝑁 ∈ ( ℤ𝑀 ) → ( 𝑀 ... 𝑁 ) = ( { 𝑀 } ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) )
11 4 10 syl ( 𝜑 → ( 𝑀 ... 𝑁 ) = ( { 𝑀 } ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) )
12 1 2 3 7 5 9 11 gsummptfidmsplit ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ 𝑌 ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝑌 ) ) + ( 𝐺 Σg ( 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ↦ 𝑌 ) ) ) )
13 3 cmnmndd ( 𝜑𝐺 ∈ Mnd )
14 4 elfvexd ( 𝜑𝑀 ∈ V )
15 14 6 csbied ( 𝜑 𝑀 / 𝑘 𝑌 = 𝑋 )
16 eluzfz1 ( 𝑁 ∈ ( ℤ𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) )
17 4 16 syl ( 𝜑𝑀 ∈ ( 𝑀 ... 𝑁 ) )
18 5 ralrimiva ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝑌𝐵 )
19 rspcsbela ( ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) ∧ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝑌𝐵 ) → 𝑀 / 𝑘 𝑌𝐵 )
20 17 18 19 syl2anc ( 𝜑 𝑀 / 𝑘 𝑌𝐵 )
21 15 20 eqeltrrd ( 𝜑𝑋𝐵 )
22 1 13 14 21 6 gsumsnd ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝑌 ) ) = 𝑋 )
23 22 oveq1d ( 𝜑 → ( ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝑌 ) ) + ( 𝐺 Σg ( 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ↦ 𝑌 ) ) ) = ( 𝑋 + ( 𝐺 Σg ( 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ↦ 𝑌 ) ) ) )
24 12 23 eqtrd ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ 𝑌 ) ) = ( 𝑋 + ( 𝐺 Σg ( 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ↦ 𝑌 ) ) ) )