| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsummptfzsplita.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
gsummptfzsplita.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 3 |
|
gsummptfzsplita.g |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
| 4 |
|
gsummptfzsplita.n |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 5 |
|
gsummptfzsplita.y |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑌 ∈ 𝐵 ) |
| 6 |
|
gsummptfzsplitla.1 |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝑀 ) → 𝑌 = 𝑋 ) |
| 7 |
|
fzfid |
⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) ∈ Fin ) |
| 8 |
|
fzpreddisj |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( { 𝑀 } ∩ ( ( 𝑀 + 1 ) ... 𝑁 ) ) = ∅ ) |
| 9 |
4 8
|
syl |
⊢ ( 𝜑 → ( { 𝑀 } ∩ ( ( 𝑀 + 1 ) ... 𝑁 ) ) = ∅ ) |
| 10 |
|
fzpred |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... 𝑁 ) = ( { 𝑀 } ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
| 11 |
4 10
|
syl |
⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) = ( { 𝑀 } ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
| 12 |
1 2 3 7 5 9 11
|
gsummptfidmsplit |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ 𝑌 ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝑌 ) ) + ( 𝐺 Σg ( 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ↦ 𝑌 ) ) ) ) |
| 13 |
3
|
cmnmndd |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 14 |
4
|
elfvexd |
⊢ ( 𝜑 → 𝑀 ∈ V ) |
| 15 |
14 6
|
csbied |
⊢ ( 𝜑 → ⦋ 𝑀 / 𝑘 ⦌ 𝑌 = 𝑋 ) |
| 16 |
|
eluzfz1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
| 17 |
4 16
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
| 18 |
5
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝑌 ∈ 𝐵 ) |
| 19 |
|
rspcsbela |
⊢ ( ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) ∧ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝑌 ∈ 𝐵 ) → ⦋ 𝑀 / 𝑘 ⦌ 𝑌 ∈ 𝐵 ) |
| 20 |
17 18 19
|
syl2anc |
⊢ ( 𝜑 → ⦋ 𝑀 / 𝑘 ⦌ 𝑌 ∈ 𝐵 ) |
| 21 |
15 20
|
eqeltrrd |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 22 |
1 13 14 21 6
|
gsumsnd |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝑌 ) ) = 𝑋 ) |
| 23 |
22
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝑌 ) ) + ( 𝐺 Σg ( 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ↦ 𝑌 ) ) ) = ( 𝑋 + ( 𝐺 Σg ( 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ↦ 𝑌 ) ) ) ) |
| 24 |
12 23
|
eqtrd |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ 𝑌 ) ) = ( 𝑋 + ( 𝐺 Σg ( 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ↦ 𝑌 ) ) ) ) |