| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsummptrev.1 |
|- B = ( Base ` M ) |
| 2 |
|
gsummptrev.2 |
|- ( ph -> M e. CMnd ) |
| 3 |
|
gsummptrev.3 |
|- ( ph -> N e. NN0 ) |
| 4 |
|
gsummptrev.4 |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> X e. B ) |
| 5 |
|
gsummptrev.5 |
|- ( ( ( ph /\ l e. ( 0 ... N ) ) /\ k = ( N - l ) ) -> X = Y ) |
| 6 |
|
nfcv |
|- F/_ k Y |
| 7 |
|
eqid |
|- ( 0g ` M ) = ( 0g ` M ) |
| 8 |
|
fzfid |
|- ( ph -> ( 0 ... N ) e. Fin ) |
| 9 |
|
ssidd |
|- ( ph -> B C_ B ) |
| 10 |
|
fznn0sub2 |
|- ( l e. ( 0 ... N ) -> ( N - l ) e. ( 0 ... N ) ) |
| 11 |
10
|
adantl |
|- ( ( ph /\ l e. ( 0 ... N ) ) -> ( N - l ) e. ( 0 ... N ) ) |
| 12 |
|
fznn0sub2 |
|- ( k e. ( 0 ... N ) -> ( N - k ) e. ( 0 ... N ) ) |
| 13 |
12
|
adantl |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( N - k ) e. ( 0 ... N ) ) |
| 14 |
|
elfznn0 |
|- ( k e. ( 0 ... N ) -> k e. NN0 ) |
| 15 |
14
|
ad2antlr |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ l e. ( 0 ... N ) ) -> k e. NN0 ) |
| 16 |
15
|
nn0cnd |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ l e. ( 0 ... N ) ) -> k e. CC ) |
| 17 |
|
elfznn0 |
|- ( l e. ( 0 ... N ) -> l e. NN0 ) |
| 18 |
17
|
adantl |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ l e. ( 0 ... N ) ) -> l e. NN0 ) |
| 19 |
18
|
nn0cnd |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ l e. ( 0 ... N ) ) -> l e. CC ) |
| 20 |
3
|
ad2antrr |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ l e. ( 0 ... N ) ) -> N e. NN0 ) |
| 21 |
20
|
nn0cnd |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ l e. ( 0 ... N ) ) -> N e. CC ) |
| 22 |
16 19 21
|
subexsub |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ l e. ( 0 ... N ) ) -> ( k = ( N - l ) <-> l = ( N - k ) ) ) |
| 23 |
13 22
|
reu6dv |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> E! l e. ( 0 ... N ) k = ( N - l ) ) |
| 24 |
6 1 7 5 2 8 9 4 11 23
|
gsummptf1od |
|- ( ph -> ( M gsum ( k e. ( 0 ... N ) |-> X ) ) = ( M gsum ( l e. ( 0 ... N ) |-> Y ) ) ) |